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The Davis-Stenger methodology was adapted to the problem of
vibration control of flexible structures. The spectral factorization
methodology avoids the difficult numerical problems associated with .
the solution of the Riccati partial differential equations which arise
4n the time domain approach for designing stabilizing controllers. In
this way distributed phenomena, like travelling waves, which
characterize the macroscopic dy-namics of flexible structures are
retained in the model, and their interaction with the control system

,. preserved :he analyt:cal design rr:cess. :omrutational.
algor tnms were developed and several :rotot pe systems were treated
including the Euer Beam and a simple two dimersional system.

Second part of the research involved t1e use of a mathematical
technioue for asymptotic analysis called -omogenization. aoriginaiiy
developed by I. Babuska, to produce simplified models for flexible
structures with a regular (periodic) infrastructure. "omogenization
cf the model for a structure with a regulr infrastructure produces a
model with smoothly varying effective parameters for mass density,
local tenc@ion, and damping that represents a flexible structure with
u nif o r m ~hmg eiZe n t e r na st r u ct u re. . 4

The homogenization technique does not require the a priori
assumption of a specific continuum structure as the approximation for
a given lattice structure. Instead, the asymptotic analysis of the
original structure produces the distributed continuum approximation
mc~el of the lattice s:ructure in the :imt as some characteristic

m (e.g., inter-cell dimension in the structural model goes to
zero. Moreover, the natural averaging process is developed in the
course of the analsis. It is r.asy to construct examples in which the
:rocedure of averaging :.arameters over a c"--racteristic volume leads
to incorrect approximations for thr system d-nami cs. The
homogenization methods used in this re. earch are based on the
assumption of a periodic infrastructure in the original model. This
is not necessary, and random structures can also be treated, if the
randomness has sufficient ergodicity properties (in the spatial
variables).

:omogenization and asymptotic analysis can also be carried out in
the context of control and state estimation problems for heterogeneous
structures. It is important that the control and homogenization
procedure not be done separately, since one can construct examples in
which control designs based on averaged models are not correct as
approximations to the optimal (e.g., regulator) control laws for the
original problem. While control and filtering theory with
homogenization is not very advanced at this stage, prototype problems
can be analyzed to a point where the basic features of design % :-
algorithms are clear.
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Summary of Phase I Research

Interaction of the control system with the structural dynamics of
the physical system is one of the fundamental issues in large space
structure applications. Our work is intended to contribute directly

* -. to understanding this interaction by using models which capture the

E7 essential distributed character of the system, and using analytical
techniques vhich preserve the character of the physical system in the
model simplification process. The methods we have used -

Wiener-Hopf/spectml factorization methods for design of distributed
control systems and homogenization/asymptotic analysis for model
simplification -- have tremendous potential for the analytical
treatment of complex structural control problems, including the
syanthesis of computer-aided-design methods for large space
structures. In Phase I of this project, we have concentrated on the
treatment of a few simple prototype systems. Further work is needed
to adapt and enhance the methods to treat complex structures. The
analytical methods themselves do not require substantial extensions.
Rather, their potential for the treatment of complex flexible
structures should be developed.

The main emphasis in the first phase of this work has been the
* -adaptation and enhancement of certain Wiener-Kopf methods for control

system design used by J. Davis for the treatment of linear, dynamic,
distributed parameter models of flexible structures. Davis developed
a frequency domain methodology for computing optimal (regulator)
feedback gains for linear distributed parameter control systems by

-: ~ Wiener-Hopf spectral factorization. The numerical algorithms for
executing the spectral factorization were based on some earlier work

* of F. Stenger. We have adapted the Davis-Stenger methodology to the
problem of vibration control of flexible structures. A generic

* problem of this type is the figure control of a large space antenna.
We have carried out the analysis and computed the optimal feedback
regulator control laws for several examples including the
Euler-Bernoulli beam model and a two-dimensional prototype
(experimental) system studied by J. Lang and D. Staelin.

~ This portion of the research has demonstrated the effectiveness
of frequency domain -- spectral factorization methods for the design
of control and state estimation algorithms for flexible structures
described by linear distributed parameter models (hyperbolic partial
differential equations). In this approach it is not necessary to
reduce the models to finite dimensional (lumped parameter) models at

Lthe outset of the design procedure. The infinite dimensional
character of the system is preserved throughout the design process.
The spectral factorization methodology avoids the difficult numerical

*problems associated with the solution of the Riccati partial
differential equations which arise in the time domain approach for
designing stabilizing controllers. In this way distributed phenomena,

% like travelling waves, which characterize the macroscopic dynamics of
flexible structures are retained in the model, and their interaction
with the control system is preserved in the analytical design process.

II o '-.4
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In the second part of the research ws have examined the use of a
mathematical technique for asymptotic analysis called
"homogenization", originally developed by I.* Babuska, to produce
simplified models for flexible structures with a regular (periodic)
infrastructure. Homogenization of the model for a structure with a
regular infrastructure produces a model with smoothly varying
"effective" parameters for mass density, local tension, and damping
that represents a flexible structure with a uniform "homogenized"
internal structure. The derivation of continuum models for complex
structures with a regular infrastructure has been studied for many
years in applied mechanics. In most cases the continuum models are
based on local averages of the physical parameters (e.g., mass
density, stress, strain, etc.) over some characteristic volume of the
structure. The averaged quantities computed in this way are related
to the associated quantities in a postulated continuum structure. For
example, the mass density and stress tensors in a long truss with a
regular lattice structure have been related to the distributed
parameters in a beam (in the work of Noor, Nayfeh, and Renton, among
others).

Our technique does not require the a priori assumption of a
specific continuum structure as the approximation for a given lattice
structure. Instead, the asymptotic analysis of the original structure
produces the distributed continuum rpproximation model of the lattice
structure in the limit as some characteristic parameter (e.g.,
inter-cell dimension) in the structural model goes to zero. Moreover,
the natural averaging process is developed in the course of the
analysis. It is easy to construct examples in which the usual
procedure of averaging parameters over a characteristic volume leads
to incorrect approximations for the system dynamics. The
homogenization methods used in our research are based on the
assumption of a periodic infrastructure in the original model. This
is not necessary, and random structures can also be treated, if the

0~ randomness has sufficient ergodicity properties (in the spatial
variables). Numerical evaluations of the averaged model are more

* difficult in this case.

Homogenization and asymptotic analysis can also be carried out in
the context of control and state estimation problems for heterogeneous
structures. It is important that the control and homogenization
procedure not be done separately, since one can construct examples in
which control designs based on averaged models are not correct as 1
approximations to the optimal (e.g., regulator) control laws for the
original problem. While control and filtering theory with r7
homogenization is not very advanced at this stage, it is nevertheless
possible to analyze some prototype problems to a point where the basic

*0 features of the theory are clear. Our work has contributed to this
process, but much more needs to be done.

el

.It



;,, "..-

,. ,-,,o',, .4.

: ") Part I: :i:

'i" '" Wierner-Hopf Methods for Design of Stabilizing Control Systems ::

Z'" ..-- -~

. . . . .. . . . . . . ... . . . . .......- ~ ..
. . S 5 * * .5 .. ** .*% - * 5*55 * . . . . % % ' * . ' % , . :.:.



-A-- - .. o°-.'- --- "

1. Background: Dynamical Control of Flexible Structures

Interaction of the control system with the structural dynamics of

the mechanical system is one of the fundamental issues in large space .- '-

structure applications. Our work is intended to contribute directly

to understanding this interaction by using models which capture the

essential distributed character of the system, and using analytical

techniques which preserve the character of the physical system in the

model simplification process. The methods we have used --

Wiener-Hopf/spectral factorization methods for design of distributed

control systems and homogenization/asymptotic analysis for model .- ,

simplification -- have tremendous potential for the analytical

treatment of complex structural control problems, including the

synthesis of computer-aided-design methods for large space structures.

In Phase I of this project, we have concentrated on the treatment of a

few simple prototype systems. The methods may be adapted to treat

complex structures. They do not require substantial extensions for

such cases. Rather, computational algorithms which translate their

strengths into effective design tools need to be developed.

The main emphasis in the first part of this work has been the

adaptation and enhancement of certain Wiener-Hopf methods for control

system design used by J. Davis for the treatment of linear, dynamic,

distributed parameter models of flexible structures (Davis 1978, ,

1979a,b 1982) (Davis and Barry 1977) (Davis and Dickenson 1983).

Davis and his colleagues developed a frequency domain methodology for

computing optimal (regulator) feedback gains for linear distributed

parameter control systems by Wiener-Hopf spectral factorization. The

1

.. . . . .. •.; ,-.,-. , ,.,'.r-, / ..... .. . ;; ./ . ',.'.. ,.','..'./,/.. -'.,. ,..% .. , ...



numerical algorithms for executing the spectral factorization vere

based on some earlier work of F. Stenger (1972). We have adapted the

Davis-Stenger methodology to the problem of vibration control of

C_ flexible structures. A generic problem of this type is the figure

control of a large space antenna. We have carried out the analysis

- and computed the optimal feedback regulator control laws for several

examples including the Euler-beam. and a two-dimensional prototype

(experimental) system studied by J. Lang and D. Staelin (Lang and

Staelin 1982a,b).

This portion of the research has demonstrated the effectiveness

of frequency domain -- spectral factorization methods for the design

of control and state estimation algorithms for flexible structures

I described by linear distributed parameter models (hyperbolic partial

* . differential equations). In this approach it is not necessary to

reduce the models to finite dimenaional (lumped parameter) models at

the outset of the design procedure. The infinite dimensional

character of the system is preserved throughout. The spectral

- factorization methodology avoids the difficult numerical problems

associated with the solution of the Riccati partial differential

equations which arise in the time domain approach for designing

ftstabilizing controllers. In this way distributed phenomena, like

travelling waves, which characterize the macroscopic dynamics of

- flexible structures are retained in the model, and their interaction

* with the control system is preserved in the analytical design process.

IL 2
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5 1.1 Generic Models of the Dynamics of Flexible Structures

The flexible structures treated in this work are assumed to be5', ". 
'.5

continua described generically by the system of partial differential

equations

(1) m(x)h (tx) + D h (t,x) + Aoh(t,x) - F(t,x)
tt 0ot0

where h(t,x) is an n-vector of instantaneous displacements away from

* its equilibrium of the structure S, a bounded open set in R n with

kt smooth boundary S. The mass density m(x) is positive and bounded on

S. The damping term D h contain both (asymmetric) gyroscopic and
0 t

(asymmetric) structural damping effects. The internal restoring force

term A h is generated by a time-invariant differential operator A0

specific to the flexible structure. For most cases of interest, A 0

may be taken to be an unbounded operator with domain D(Aa) containing

smooth functions with the appropriate boundary conditions which is

dense in the Hilbert space - L2(S) with the natural inner product,

,>. In many cases A O has a discrete spectrum with associated
2

eigenfunctions which constitute a basis for L 2(S).

The applied force distribution F(t,x) generally has three

components

(2) F ~t,x) Fd~t,.) + F (t,x) + Fa(t,x)

where F (t,x) is a vector of exogeneous disturbance forces and

torques, Fc(t,x) is a continuous, distributed, controlled force field

(as in an electrostatically controlled system); and Fa(t,x), -.5 
..

-' "n' 'i % %. -- " ,- - ,-''-'. *.%*. .' .. %* * '- .'_, *,- S'''' ._. . .,-. . .. 5." -S . * , . ... ." '
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represents the control forces due to discrete actuators

•A(3) F (t.,X) - Z b ()u t) - B U(t)

a j-l 0

The actuator amplitudes are u (t) and the actuator influence functions I
b*(x) are typically elements of H (which usually, but not always,

approximate delta functions 6 (x--.)o Observations are usually

" "" assumed to arise from a finite number p of sensors

S(4) Yit - <ch> + <s. > j-1, ..

or

,-.. (4') y Ch + C ; ylt) = I W Y. :-I

where the position and velocity influence functions c , cj,

j " t,...,p are elements of H which may represent point devices.

Note that Bo-Rn  H , :R -0 Hot and 0  * H are bounded.
.0. % ILJ '.:

The control problem for ()-(4) is to choose the discrete control

amplitudes u (t), j a I,...,m, and the distributed control forces

S ( t , x ) , based on the observations yi(t), i 1 1,...,p to maintain the

state

h (t, x),!-l

: (5) v (t) =

as close to its equilibrium position (nominally zero) as possible. If

the disturbances are transient, this may be accomplished by using a

, . -.
regulator control law which minimizes the quadratic performance index

.7.

*p -'

a.j°" ,:. ~~* Na~ aa *\.a . .: a



-T )]()+ dt(6) J() fo Cq v) + au (t)u(t) + QS' c

where q, Q are non-negative quadratic forms, and a is a positive

parameter. This is the generic control problem surveyed in (Balas

1982). It includes boundary and interior control of vibrating

strings, membranes, thin beams, and thin-plates.

1.2 State space models and modal control

Suppose for the moment that A0  is symmetric with compact -

resolvent and spectrum bounded from below. The spectrum of

consists, therefore, of isolated eigenvalues X,

and eigenvectora such that A - . Assume X > 0. Then A
satisfies

(8) <A0h,h>0 k elhiI1
2 'e> 0

and AO has a square root AOl Let D(A ) L 2 (S) be the domain of0 0
A0 and D(A )c L 2(S) be that of At . Let H - L 2 (S) x L 2 (S), and010 0
consider

(V AV
- Fo,- "._). ~DA~

(1) - 0 C0

so that B:Rn R -oH and C:H-. RP. With v(t) defined by (5) we have

. M AB ,
6(1) t =Av(t) +Bu(t), y(t) =Cv(t),

"."

-. W : .(% -"*%~.%d ~* .. ~

a * S a



which is the state space description of the original problem with the

additional assumptions on A.

The energy inner product <.,.> defined on H1 is

" "i":.',> iE" <vI'A0iV2>0 + <l'2i:(12) < L >": <V AV> + <1F

LLII! And so, in the energy norm we have ,

(13 II(t)II - <h,A 0 h> o  + <htht >

which is a measure of the total potential and kinetic energy in

(h,ht ). The operator A on (H1 , <,.>E) generates a unitary group U(t)

" (Treves, 1975) and

cog .'kt W k sin Wt "-'-'0
(14) U(t)v o  - E jk

k-1i w sin wkt Cos Ua.,'Lk(O)

for any

(15) Vo I C Hk-~= k- ia (0) I  --

- Thus, when u(t) 0 in (11), energy is preserved, i.e.,

-1u(t)v 'j'I " i ?, for any voe I. For any u(t), continuously

differentiable, the solution of (11) is

(16) v(t) - Ultlv 0  + f0 U(t-T)Bu(T) dT,"

S.. In fact,

"1. 6

%.. ... *. b<. ... .., ' ' at. .....



(17) v(t) 1 k

k=s ikk (t)]

with [1(t), k(t)], k = 1,2,..., defined by ordinary differential

equations.

By introducing finite dimensional subspaces H span (Ok'

k - 1,2,...,K of b, one can construct finite dimensional modal

approximations to the system (11); and from these, finite dimensional

control problems whose solutions may be used to compute suboptimal -

control las for the infinite dimensional control problem defined by .

(6)(11). (See, e.g., Balas 1978, 1982). The feedback controls

obtained in this way will stabilize the first K modes of the

distributed system. However, as noted in (Balas 1978) in all but a -

few special systems, the control actions will excite the higher order

modes. This 'spillover" effect invariably degrades system

performance. While this phenomenon has received considerable - -

attention in the literature, it is the unavoidable companion of design

methods based on lumped parameter models.

In this research we take a different approach to the control

system design which deals directly with the infinite dimensional

system. The method uses a frequency domain formulation of the control

problem, analogous to the setup for finite dimensional problems in -

(Willems 1971), and a spectral factorization algorithm to compute the

feedback gain. The formal algorithms are described in section 2.

Before developing the mathematics it is useful to look at some . ,

examples and prototype systems which illustrate the basic features of

the control problem.

.,,-.7 -.... >
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1.3 Control of a vibrating flexible string

Small vibrations of a flexible string may be described by * -

(18) p (z)htt - p(z) hz + qz(z)h + r.(z)h

where p(z)-_> P> 0 is the linear mass density, p(z) p > 0 is the
0.() p0 0i th

modulus of elasticity, and we assume that p , p, q, r are twice

continuously differentiable. Suppose that the space ze[0,1] and time

t have been normalized to dimesionless coordinates. The system can be

-, -,put in a standard form by changing 6he independent variable

z I.

z p(s)
%°s

with L = x(1) we have

h h + a(x)h + b )h= 0

" (19) 0 x_ L ,0 < t

The coefficients a(x) and b(x) are continuously differentiable

functions of x. Defining

" (20) v = (tx), W = h (t,x)

we have [- [0 [1 [] + x[b(x 'o [w
(21) 0[. ] .] + 0

[o] 1]][~) ~j[J" t 1 3X W 0.c

The appropriate boundary conditions are

.5 % a 0 V(t, 0) + OW (t, 0) = 0

(22) a v (tL) + oW (t,L) = u(t)

8

i r.
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with the conditions +1, ( /$ +1 imposed to avoid

pathologies. Here $0  0 corresponds to a fixed endpoint, while

" 0 permits an end to move freely along the h axis, and a0 0, 

B 0 represents an end free to move but with positive or negative
- 0

• .V friction. The function u(t) is a boundary control.

One can generalize (21) to

(23) y'.. _ [ j.A.[v

with

(24[)f [a (x) a'2(x)1(24) Af = - f - al £If"-

Il a W 2 ~x a (X)
21.x 22

p and the real coefficients ai j(x) are continuously differentiable on

0 x < L. By studying the finite time controllability of (22)-(24)

D.L. Russell (1972) was able to prove some interesting properties of

the eigenvalues and eigenfunctions of A. In particular, if the

* (complex) eigenvalues of A are IXk1 , then I eXk x k - 1,2 ... I forms a

Riesz basis for the space L2[O, 2L]. Moreover, there is a unique

control u e L2 [O,T] T-2L (recall that all variables are dimensionless)

which takes the solution of (22)-(24) to zero at tT2L from arbitrary

initial conditions (in the space L2 )

(25) v(,x) = v 0 (X) w(0,X) - w0 (x), 0 x L

and .

9, ..2:
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IVO()I2+ IO(XI2 T ut)2

(26) kf' Ivo(x)l 2  Iwo x1 2dx : o 0 u~t)l dtlT-2.

Kf" Ivo(X) 12 + luo~x)l2 dx

for some positive constants k, K. The time T = 2L is "critical". In

general, it is not possible to make the transfer in T<2L; and for

T > 2L there will, in general, be many controls which accomplish the

transfer. By considering the special spectral *structure of the

operator A and its adjoint A , Russell was able to show that the

- unique control u(t), 0 St <2L, accomplishing the transfer could be

synthesized by a bounded linear functional of the state in (21).

From this analysis it follows that the optimal regulator problem

" for (21), that is, the problem

PO 2 L * 2 2

(27) min u (t) + fO + wt,x)I + IW t;X)I dx)]dt

%., ad

subject to (21) (22) with admissible controls consisting of bounded

(linear) feedback functionals of the state has a unique solution which

' produces a finite optimal cost. The problem (23)-(25) (27) is the

simplest example of the class of control problems treated in this

" -." work. It is a one dimensional version of the two dimensional *...:

prototype system discussed next.

1.4 Control of a two-dimensional hyperbolic system

* In an interesting paper J. Lang and D. Staelin (1982b) studied

the dynamical control properties of a simple experimental system as a

• ."prototype of an antenna design using electrostatic control to maintain

10
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m ~the antenna shape (Lang and Staslin 1982a). The experimental system r-

2)consisted of a flexible, conducting wire mesh (about 1 a suspended

e% vertically in tension by rigid rectangular boundaries and biased by a

high voltage source. A parallel surface of equal dimension, spaced a

short distance normal to the mesh, supported a 3 x 3 array of fixed

conducting plates independently addressable through bipolar, variable

low voltage sources which collectively served as a distributed,

electrostatic control. A similar set of plates, equally spaced from

the mesh on the opposite side, served to capacitively sense mesh

deflections. The balancing electrostatic pressures on the mesh

produced a grounded-control equilibrium geometry in which all three

surfaces were parallel.

A regulator control law was designed to modulate the voltages on

the 9 actuator plates in response to (filtered) observations of the

mesh deflections from the 9 sensor plates. Finite dimensional modal

U models representing the dynamics of 1 to 3 modes were used in the

control system design. The basic linear - quadratic - Gause'ian

regulator control law was not satisfactory in certain experimental

regimes (high bias voltage) due to 1-modeled physical factors.

Modifications were necessary to achieve mesh stabilization in these

cases. Spillover effects were also observed and compensated.

In (Lang and Staelin 1982b) the mesh was modeled as a flexible

membrane in tension. The transverse mesh deflection h(t,x,y), defined

~ as positive toward the sensor plates, satisfies

(28) mht T Th + T h~ Dh~ + f

tt 01 X Y11



Here K is (uniform) mass density, Ijt, To are (uniform) coefficients of

. a.e

mesh tension, and D is a viscous damping coefficient. Assuming a long

wave model for the electric field between the mesh and plates, the net

transverse electrostatic pressure, f(t,y,y), acting on the mesh

satisfies

V (V-u)l

(29) f j c H- - -

* *a.0 L(Hh) (H~h)2],j

where u u(t,x,y) is the potential of the actuator plates, V is the

mesh bias potential, H is the electromechanical plate-to-mesh

separation, and c is the permittivity of free space. Assuming

lhl<< H and iI << V

equation (29) was linearized, and the resulting linear control system

studied in (Lang and Staelin 1982b) was

i. (30) Mhtt =Tahxx + TShyy - Dht + Kh - But)

where K - 2%V 2/H 3and B -"oV/H2. Defining S - [0, L ,] x [0, IS] as

the location of the mesh, the mesh boundary conditions required zero

deflection at the perimeter.

If we identify Ah as the linear operator on the right in (30),

then the eigenfunctions of A are

" (31) Sn (x,y) - sin(mrx/L ) sin (n~ry/L 81

0x L -.. y L

and the corresponding eigenvalues are

12
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"'D D K T X n2 7
= -±+ - - -.-

(32) mn 2 ;2 I14 ML 2

* These define the "open-loop" natural frequencies of the system.

Notice that the (m, n)-modo is unstable if

2 3 2 12
7, H T n2T

(33) V > - + -

Therefore, if V is large enough, a finite number of modes are

open-loop unstable.

The experimental system in (Lang and Staelin 1982b) has noise in

both actuator and sensor systems. This noise was represented by

Gaussian white noise. The overall performance index used in the

design was

4.L L1 1{ _i c+I)Tt LG L r2v2  '

. I (34) LM L 0 '1) [ a q 2 h 2 (t,x,y) v (t,x,y) dx dyldt}

k

where r V 01, with V0 the dynamic range on the voltage control

.i system, and q - 2 V/HvO .

The study of this small system provides a great deal of useful

information on control problems that can be expected for certain

classes of flexible structures. The control system performance

reported by Lang and Staelin provides one of the few available

benchmarks against which alternative control system designs may be

tested. We shall consider this system further in section 4.

13
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1.5 Control of a simply supported beam

" .The Euler-Bernoulli equation for the dynamics of a simply

supported beam is

Mh + Dh + EIh " flt,x)
tt tiX xxx

(35) o x<-L , o t

h(t,O) - 0 - h(t,L)

h (t,O) - 0 - h (t,L)

where N is the mass density (per unit length), D is a damping ratio, E U

is the modulus of elasticity, I is a moment of inertia, and f is an

applied force distribution.

If we ignore the damping, D 0 0, and normalize other parameters

to unity, then the mode shapes - eigenfunctions are fk(X) - sinkyrx and
2k

the eigenvalues are k (kir) 2 . Control of vibrations of the beam, may

be based on the performance index

2 2 2 2 2
"" "" (36) J(u) f [ f0(tx) + qlh (t,x) + q2ht(t,x)dx)] dt

Numerical studies of this problem were reported in (Balas 1978). A

point actuator and a point sensor

(37) f(t,x) = u(t) 8(x-

y(t) _ h (t,i 8 C* -X )

were used to effect control in the problem. Spillover into the

uncontrolled residual modes produced instability in the simulations,

14*" 14 "_
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I due in part to the absence of damping.

I.- This problem is considered in more detail in section 3.

15



2. Wiener-Hopf Methods for Control System Design:

The Davis-Stenger Algorithm

The connections among least squares optimization, spectral

factorization and algebraic Riccati equations have been considered

'- important in control theory for many years. (See, e.g., Anderson . -

(1967), Brockett (1970), Willems (1971), Molinari (1973a,b), Helton

S." (1976), and the references therein.) To see how the connection arises,

consider the standard finite dimensional, infinite time linear

r regulator problem .

"r f iu(t)1 2  + y(t)I 2

(I) x(t) = Ax(t) + Bu(t), x(O) = 0

y(t) = Cx(t) ,t 0

Suppose A is a stable matrix and (A,B,C) is a minimal finite

. dimensional triple realizing the transfer function

(2) G(s) = C(Is - A)-1B

Then the optimal feedback control for (1) is given by

-7.

" -(3) u(t) = -B*Kx(t)

with K the unique positive definite symmetric solution to the

algebraic Riccati equation

(4) A*K + K(A- BB*K) =-C*C

16
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An integral equation for the optimal feedback gain may be derivedj

from (4). Let a be a complex number not in the spectrum of -A*,

• : .-.*.

a(-A ), nor in the spectrum of A-BB*K, then C..

(5) K Is - (A-BB*K) .i + (-Is - A*) K = (-Is - A*) C*C[IS - (ABB*K)-

From standard results (Brockett 1970),a (A-BBOK) is contained in the

* open left half of the complex plane; and, by assumption,a (-A*) is in

the open right half plane. Let r be a closed rectifiable contour

encircling a(A-BBK) in the positive sense, and integrate (5)along I.

Since

S-- Iys - (A- B*K)J-ds =

"* (6) p..';

fr[I A*f-lds 0 0

S',we obtain

1_- -- ,---.-1-

(7) K - - A*I C*C [Is-(A-BB*K)I -ds
21ri

. .and so

(8) KB - /i (Is - *]-c*c [Is- (A-BB*K)] "Bds

L7 Since the integrand is the product of two rational functions, the

contour may be deformed to yield

17
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1-- -1 IN-1 V

KB m L[-iw- A C c*C (liW- (A-BB*K)] Bd.'.

The spectral factorization identity (Brockett 1970, illems 1971) :* "i

-1.
-.,B , i w) x + Ov U w) G w) .

(10)= I+ B (1w-Afl 'C*C (11w- A]
". ~(0) 1 + B* [-Ii * iw iU-l i '

...: :. = F* (1 ) F (1 ) ' ::

= [I + B* (-IiW - A*) - IK] K I + B* K (i- A) B)

and the identity

(11) C I Iiw- C BB*K)I B C (Iiw A)-B [ I + B*K (1iw A)-IB1

when used in (9) gives the result
1

(12) S*K = £ IF* (iw) I B*R*(iw,A)C*CR(iw,A)dw

where R(s,A) - [Is-A] -lis the resolvent of A.

Hence, to compute the optimal feedback gain, we can either solve

the nonlinear algebraic Riccati equation (4) for its unique positive

definite solution or we can carry out the spectral factorization of

I+GOG in (10) and then compute the integral (12). In finite

dimensional control problems there may be little reason to favor

* formulation of the computational problem in one setting - the Riccati

equation - over the other - spectral factorization. In infinite

dimensional problems, however, the spectral factorization method

appears to have superior numerical stability properties over direct

integration of the Riccati equation.*

.18 e-
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2.1 Davis's Method

In a series of papers, J. Davis and his students (Davis and

Barry (1977), Davis (1978a,b) (1979) (1982), Davis and Dickinson

9;- (1983)) have explored the application of spectral factorization

methods for control system design to a class of distributed parameter

models of long trains with multiple locomotives. The control problem

is to modulate the acceleration of individual locomotives to minimize

deviations in coupler stress throughout the train. Disturbances

include passage of the train over a grade, which tends to set up a

"travelling wave" along the train of stress deviations from nominal.

The first approach to this problem which comes to mind is to write out

the equations of motion of the cars and locomotives in the train and

formulate an optimal control problem for the overall system. The

large dimension of the resulting model and the absence of any special

structure inhibits this approach. Decentralized control schemes

(McLane, Peppard, and Sundareswaran (1973), Gruber and Bayoumi (1982))

- .are not particularly effective for these problems. As Davis and Barry

- "(1977) have observed, aside from the difficulties in solving large

scale control problems, one has trouble estimating the effects of

system parameter changes or of variations in the number of units in a

block based on lumped parameter models.

Davis recognized that the mass-spring nature of the

interconnected system could lead to traveling wave phenomena setup by

19
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"competing" local controllers (locomotive accelerations), Hie reauoned

that the macrosopic, widely coupled motions of the elements would

contain the bulk of the energy of motion of the total system. This

hypothesis suggests that a control scheme designed to suppress such

motions would achieve substantial reductions in the coupler stress

levels.

To represent the system in a fashion which would capture wave

phenomena most naturally, Davis reformulated the system as a

distributed parameter system with boundary controls. (Davis and Barry

1977). The resulting model proved to be mathematically tractable.

The effects of changes in both system parameters and the number of

units in a block were readily apparent. In fact, an increase in the

number of elements in a block increases the validity and usefulness of

the model. In contrast, finite dimensional models tend to become

increasingly intractable as the number of units in the system

increases.

. Davis' modeling technique is simple and instructive. Consider

the mass - spring - damper system in Figure 2.1. The dynamics are

d 2  d ,..

3)m- x -- K (X + 2x -X )-c X + 2x -X )
dt2  

: -1 i i+d i-i i

where xi(t) is the deviation of the ith mass from its nominal

position. The continuum approximation to this system may be developed

as follows: Let - e [0,1] be spatial position along the "rest

length", unity, of the overall system, and let u(s,t) be the deviation

of the mass at rest position z and time t. Making the identification

20
r. TV

}re~ %L%' %



_mm L.

Figure~~~~~ ~ ~~~~~ 2.1Dsrteeeetmde.o.icolsi a

(1 )u4.N 
t

On rie t th ditiuetodleuto

2 2 3

at z

Oae arrivesatithefdistiued moel ofeatewitenh

223

at 2Z azz

2~form au a u
at az aa

the equation describes the longitudinal motion of a visco-elastic bar;

the term s(z,t) represent. the stress in the bar, here proportional to

21



a linear combination of the strain and stress rate (Davis and Barry

1977) (Greenberg, MacCamy Nisel and 1968). The natural boundary~.;

'? , : conditions for (17) are in terms of s(zt) at s-O and 1, i.e.,

-;" (18) s(o,t) fo(t), s(1,t) f Qt)

the applied forces and u(z,t), u (z,t) at t-O.
t

Rescaling time at t' - t/k/c), the system (16) may be rewritten

in dimensionless form as

(19) ;- a +_2_ + O<x<lt<
(19) a2  a z a

with a - c2/kKN3. And this may be written in matrix form as

['at u a OaS, ~
(20a) La LI"

(2b N 1 U + uz](O't) f- (t)

Na lux ut)1t) Y 1 t)

,(o), u(zO) given

Let A be the matrix differential operator on the right in (20a).

Defining H IPL[O,1] x L2E,1] with the energy inner product,

.....

22us u ],'.' 9"
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* q

(2) < ' > (sCup + vq) dz
v q 0

(21) < f:] , r I - Po (au:.q d

then A on H has domain

D(A) - {[U]: u,v,v absolutely continuous u ,v eL (0,1],

(22) " -"
u + V = 0 at x = 0,11

x

dense in H, A is a dissipative operator, and A is the infinitesimal

generator of a class C contraction semigroup T on H (Davis and Barry0 t

1978, Theorem 1). Moreover, the resolvent

(23) R(s,A) 00 e Tt dt
.

of A may be computed explicitly. (See section 3 or Davis and Barry

1978.)

-- V

. ,. It is not possible to write the solution of (2) in the strong

form "

• " ,".(24) " = AU + Sflt)
(24) -r+ft

where

T T
(25) R nff

2B:R - I. H -'.

since the boundary forces correspond to generalized function "inputs".

Using L "1 as the inverse Laplace transform, Davis and Barry treat (20)

Si. n the form

(26) U(t) - T U(O) + L 1 {G(sgz) f (z)
t

- . 5. - .
23
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-S where G(s;z) represents the "transfer function matrix" associated with

the boundary value problem (20). -'.

The (optimal) control problem involves minimizing variations in

the stress distribution throughout the system. The quantity .

1 12 2"'12's2 (z,t) dz- at + .'"-z.'"a/

V, (27) 0 ,a

corresponds to the total stress in the system. Recalling the original

approkimation(13)-(16), we have the correspondence

1 2 2 Nx C 12

(28) f0 (us+ Uz) dz N X X + (X X0 z zt i i M-x

and so, the natural quadratic cost functional is

(29) J_ {Ifo() 2 + If12 + 1fo (u + u 2 d-}dt

This formulation includes stress contributions from spatial modes

of all wavelengths. In most physical systems high order modes will

". .- - .'-
A *have a negligible contribution to the overall behavior. Using "r to

denote projection onto the subspace of H spanned by the first p

- eigenfunctions of A, and defining the system output as

(30) Y(zlt)- OL"r. [• 1 (z't)

the final formulation used by Da-is and Barry (1978) is

[7 { If0 (t) 2 + If (t) 12 + fy (z,t) 12dx} dt
•~~ f ( ) n 0- - -

00

24
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U(.,t)- T, Co) () + L {G(s, (Z), (t,

y(z,t) - a[l,a ] [ U] (z,t)z p
2 2

U(0) C D(A)C.L [0,11 x L [0,1]

The resulting optimization problem is a distributed control problem

with state cost restricted to a finite dimensional subspace.

Davis and Barry (1978) compute the optimal control law for this

problem using the spectral factorization algorithm described earlier.

A key step in the procedure is application of a numerical algorithm

for spectral factorization due to F. Stenger. In the next subsection

we summarize Stenger's algorithm.

2.2 Stenger's Algorithm for Spectral Factorization

To evaluate the control law for a given problem modeled as in the

last subsection, we must compute the spectral factor F(s) appearing in

equation (10). That is,

• *

(32) F (s) F(s) H(s) I + G (s) G(s)

where G(s) is the transfer function of the system being controlled.

The first problem is to determine conditions under which the spectral

factor exists. Since G(s) is the transform of a real vector valued

function, which we assume to be integrable and square integrable, it

follows that S(s) - G*(s)G(s) is a Hermitian positive semidefinite

(matrix valued) function and G*G is the transform of a function which

is in LI/ L2 _

25
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S ISince S(s) is the transform of a function in L2it follows from

the classical theory of Gohberg and Krein (1960) that H(s) has a

'S unique spectral factorization of the form (32) where

tl +
F I £ F (L+) C-Fourier transform of L, flaCtionxs)

F U40) - F(-iad)

where L4 denotes those functions in L with positive support. As noted

S in (Davis and Dickcenson 1983), the assumptions on S(s) in fact imply

(34) F 1  C F(1fL 2)L

Sand F(iw) F(P-iw). These conditions, therefore, settle the question

.' . o.

of existence and uniqueness of the spectral factor.

In (Davis and Dickenson 1983) an iterative algorithm was given

for computing the spectral factor. Since this method is at the heart.

of our computational programs, and since it makes use of Stenger's

algorithm, we shall develop it here. The starting point for the

iteration in (Davis and Dickenson 1983) is the Newton-Raphson

- iteration for the solution of the algebraic Riccati equation (4);

that is,

:'"(35) n±l z * n' .l * n n:::

K (A BB K + (A- BE'

From this a simple calculation leads to the desired form of the

iteration for the spectral factor (see Davis and Dickenson 1983, pp.

5 290-291)

(36) F~~ P HPF)- S(F~) 1 F

.

= , °-.4.%t~.4.P.~
4

. , __

whre Po[puti s the pcaual prjetnoprtor. Sidti e fine on ther

-_ ';ofou cmptatonl rorasandsiceitmaesuseofStngr'26
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1 2convolution algebra I0 L1  or on L "by

(37) P+ [I + f(t) e ldt - I + f f(t) e tdt

Stenger's algorithm is used to provide a numerical approximation to

the causal projection operator. Before discussing that, we note that

. under the assumptions on G(s), and therefore on S(S), that the

iteration may be shown to converge from a suitable initial guess to

2the uniquely defined (in L causal spectral factor F(s).

The algorithm (36) has a particularly simple form. As noted in

(Davis and Dickenson 1983), the computation of P+[-] is the most

• difficult step, but Stenger's result takes care of that. The

numerical approximation in (Stenger 1972) takes the form

(38) P4 If] I M (W). f(kh + ih) r h)
) t ( k m (w-kh-ah).

Here h is the step size and r and a are parameters defined bym m
Stenger. Specifically,

(9) a r 4k __h__ 2
M 1i m m 4kJK qC

r--i

where q is a parameter chosen in the algorithm and

2 2(40 xK (a/b) k - }xb2

- ~(40)k-w

an 2~ q b 1) +i2+ Z qm" - (-l m-l-..

m~l m~l .-.. '

27
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The step size is chosen based on the bandwidth of the transfer

function 1(s). If, in (38), one chooses to sample the projection f
* .. A ° '

at the same sample points as f, then, as observed in (Davis and

Dickenson 1983)

..(41) f+(kh + fjh) f + m--

(k-j)h-a h + Jh

and it is clear that the required calculation is a convolution. Since

the range of sample points is finite this is naturally implemented by

a fast Fourier Transform (FFT); and this substantially improves the

computational time.

r-K Since we must compute (F*) S(F )- in the iteration (36) for theSI n n

spectral factor, it is best to rewrite the iteration as

(42) (FU- - (Fn)- ( + P+ [(F S(Fn ) -i]) -I1

and execute it in this form. As observed in (Davis and Dickenson

1983), the last factor in this expression is a perturbation of the

identity* (since (F*)-IS(F )-1 - I 0), and this has natural
n n "

advantages in the numerical realization of the iteration.

As suggested in (Davis and Dickenson 1983), a suitable choice for

the initial guess for the spectral factor F is the diagonal matrix

whose elements are (scalar) spectral factors of the corresponding

diagonal elements of S. This choice implies that the matrix

(F*)-Is(F )-1 is a matrix with ones on the diagonal and with all the
n n

off-diagonal elements less than one in magnitude. This tends to

prevent the iteration from blowing up. The diagonal factors may be

28[.. ,°'72



obtained by an FFT implementation of the scalar algorithm in (Stenger

1972).

The method as described here was implemented directly on the

problem of controlling the dynamics of the Euler-Bernoulli beam. The

results are shown in the next section. A careful consideration of

Stenger's method suggests an alternative implementation of them0

algorithm which takes advantage of the occurence of Hilbert transforms

in the course of the computations and the effective use of these

transforms in the representation of the causal spectral factor. This

observation permits an efficient numerical realization of the spectral

factorization procedure. We shall develop this in the context of

design of stabilizing controls for a two dimensional flexible

structure. This result and the associated algorithm are reported in

section 4.

2--,-.v
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3. Control of a One-Dimensional Structure

The control of simple one dimensional structures serves to

illustrate the general analytical methods in the simplest form. One
dimensional models can also represent certain components, e.g.,

flexible beams, which appear in composite large space structures; and

they may represent certain two or three dimensional structures with

natural symmetry. In this section we consider a simple system, the

Euler-Bernoulli beam in detail working through the computation and

simulation of the optimal stabilizing feedback gain.r
3.1 Control of a Flexible Beam

The dynamics of an undamped flexible beam undergoing transverse

notion are described by the Euler-Bernoulli partial differential

• .equation
m ut (t,x) + EIu (t,x) f(t,x)

XXX •

1E(1) o <x < L, t>o

where u(t,x) is the transverse displacement of the beam, f(t,x) is an

applied force distribution, m is the mass per unit length, I the

- moment of inertia, E the modulus of elasticity, and L is the beam

length. To facilitate comparison of our results with earlier work

(Balas 1978b), we shall assume that m, E, I, and L are all unity. The '.

boundary conditions for pinned support are

u(t,O) = 0 - U(tl)
(2)

u X(t,Q) =0 -u_ X(t1l)-

" :] The beam is controlled by a single point actuator
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(3) f(t,x) - 1 (x-a)v(t) O<a<l L

and a single sensor measures displacement

(4) y(t) u(t,b), O<b<l

The system is deterministic and actuator and sensor dynamics are not

modeled.

Balas (1978b) designed a feedback controller for the first three

modes of the beam which minimized the (unweighted) energy in tnose

modes. His controller includes a six-dimensional Luenberger observer

to reconstruct the state.. The energy in the fourth (residual) mode

increases rapidly due to spillover effects.

Our approach to this problem is based on the infinite dimensional

model. Taking the Laplace transform of (1), we have

U xxxx (s,x) + s2 U(s,x) - F(s,x)

(5) U(s,O) = 0 - U(s,l)

U (s,O) = 0 -U (s,l)
3= 0

the Green's function for (1) (5) satisfies

(6) G (s,xjx") + s2G(s,xlx') -(x-x')-

Consider G in the form

fA sinh ,/ X) O<x<x' -.

(7) G('s,xlxb .
sinhf (1-x)) x'<x<l

with A and B complex constants to be determined. Note that the
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boundary conditions in (5) are satisfied by (7). At x-x' we have

G (8) + s G dx=U
I

- mx '
I -I

(See Tai (1971) F From (6) (8) we have

x' +e
(9) G I =1

r and from this

(j~ N -1 (5mb s (1X

B ) s3/2 sinh s sinh s x' /

which gives the Green's function. -.

The transfer function relating the input f(t,x) in (3) to the "'.

" . output y(t) in (4) may be written down immediately from G(s,xlx').

, fl C(r,xjx') F(s,x')dx' = - G(s,bla) V(s)""(11) Y(s) ff U(s,b) = foI"-

with V(s) the Laplace transform of v(t). Identifying

we have
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-(sinh a a) sinh (l-b) s)r'"3 /2  ~, x -a<b-x
. -" 4 / 2- -3 / s n h / -"--

,:-~ ~ 31 ) T a (S) - :

-(sinh (1-a) s) (sinh b s)
fi-3/2  i-a>b x

Balas~r 198us s = "::

Balas (1978) uses a b and for this case we have

6 6|2
(14) TB (s) T (s) 2(sinhjs/)

:IB 13/2
s2s sinhf a

To use the Davis-Stenger algorithm as described in section 2, we

must compute the spectral factorization of

(15) H (s) 1 + TB () TB (S)- F (s) F)

Substituting, we have

2 2

(16) H~iw-l+~ (sinh/ 6) (sinh !;i/6)

and the computational problem reduces to computing the spectral factor

F*(s) from (16), and then computing the optimal stabilizing feedback

gain

* 1 .-.. *. *

(17) BK [F* (iw)] G () CR iw, A) dw

by numerical integration. -%

33
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* 3.2 Numerical Results

In the computations and simulations which follow, we consider the

same beam parameters used by Balas (unit length, with parameters

normalized to one, and zero damping). The numerical requirements of

the algorithm are not changed for more realistic choices of

parameters. In addition to the case considered by Balas (with one

controller and one observer at opposite ends of the beam), we also

consider the effect of increasing the number of controllers and

observers, and finally the effect of delays in the control loops.*

Practical implementation of the algorithm requires frequency

sampling of the transfer function and spectral factors, and spatial

and frequency sampling of the resolvent. It was determined

experimentally that for the given beam parameters, a frequency range

of plus/minus 30HZ is adequate, since the gain from input to output in

the range beyond this is insignificant, see Figure 3.1. The figure

also indicates a very smooth dependence of the transfer function on

frequency, so that the 256 sample points used in the program are quite

adequate. Spatial discretization is done using 100 equidistant

points.-

An example of the feedback gain is given in Figure 3.2, for the

velocity state variable, and in Figure 3.3 for the displacement state

* variable. (See Appendix A for other gains corresponding to different

*The issue of the effects of the delay on the control action and
the system stability was raised by Dr. J. Burns, formerly with
AFOSR, and now with VPI&SU, Blacksburg, VA. We are grateful to
Professor Burns for his inputs on this problem.
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arrangements of the controllers and outputs.) A sharp peak at the

point of observation for the deflection state indicates the control

effort to reduce the deviation at this point to zero, since only this

point contributes to the optimization cost. In this case we have

penalized the state deviation at the observation points (in the cost

criterion) 500 times more than the control, so this is "cheap

control."

The feedback gains, one for the speed state and the other for the

deflection state are integral operators as defined by (17). These

gains are computed off-line. Computation of the input function for a

given time requires evaluation of the integral operator B K acting on

the state. This is accomplished in the program by approximating the

integral as a sum of piecewise constant functions.

In controlling a physical beam one would need an observer for the

deflection and velocity variables that would use (point) observations

..of the beam deflection as inputs. For the simulation results here the

deflection and its derivative are obtained by numerical integration.

S*'" The case studied by Balas, where the controller and the observer

are at the opposite ends of the beam, exhibits poor observability and

controllability, which is reflected in the large control efforts and

long settling times to stabilize the motions (see Figure 3.6). Using

more observers and controllers substantially improves the

"controllability" of the system. For example, in the case of three

collocated, equidistant controllers/measurements, the margin of

improvement can be seen by comparing Figure 3.5 with Figure 3.6. See -

35.
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also Appendix A for the time responses corresponding to these two

cases.

Delays in physical control loops are inevitable due to the finite

time necessary to process measurements and compute the resulting

controls. Analytical treatment of delays using time domain models is

not nearly as convenient as it is in the frequency method described

.. here. For example, if the delay is T, then we need only multiply each

.. .- element of matrix H(s) in (15) by a factor exp(-sT). Therefore, H(s)

is invariant with respect to the delay, and the critical part of the

gain computation algorithm, i.e., spectral factorisation, need not be

recomputed for the delayed case. Of course, the delay appears in the

transfer function, and so, a new gain must be computed for each

* - different delay. (Numerical results displaying effects of delays are

discussed later.)

' To validate the program, we simulated the response of a beam

subject to an initial disturbance in the form of one of the spatial

modes, and with a feedback based on the optimal control discussed

above. Figure 3.5 is an example of a time variation of the beam at

the observation point. (Other such examples are given in Appendix A.)

Note that without the control this response would represent an

undamped oscillatory motion since the beam model does not include

damping. Damping has a stabilizing effect in this system; and the W.,

control action is enhanced if damping is present.

.: . ... ,3
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The plots summarizing numerical work o h xml rbe

.C., n th examle poble

appear in several groups in Appendix A, and they are grouped asL

follows. For a given delay, an4 a given number and position of

V ,~ controls and observations, we first display gains for deflection and

velocity states, both for each of the inputs. Next is a group of

~ plots showing the beam response to the optimal control when the beam

is initially displaced in the form of one of the first three spatial

modes. (significant components of the matrix H(i )are well below

30Hz, i.e., below the frequencies induced by the 4th spatial mode.)

The meaning of the plot titles is as follows: "Beam at x, yth mode,"

t means that the beam is initially displaced by the y-th spatial mode,

and the deflection of the beam is observed as a function of time at-

point x. On the control plot we indicate the position of the point

control and the time evolution of the control at that point.

While the main purpose of conducting these experiments was to

verify the control algorithm, several phenomena were observed from

these experiments. Comparing responses of higher order modes with

those of the lover order modes, it is evident that more energy is

* needed to control higher order modes (note that our model has zero

damping). This reflects the poor controllability and observability of

the higher order modes. Second, the gains for the deflection state

have pronounced peaks at the observation points, suggesting use of

localized - decentralized feedback. Unfortunately, the speed gains

* indicate much more spatial, coupling, suggesting that decentralized

* control schemes may not be effective (at least for the parameter

ranges used in this problem). Third, the delay has a substantial
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effect on the performance of the control. (Compare any case with

delay from Appendix A with a case with no delay.) Nevertheless, the

stability margin is remarkably wide. An example from Appendix A

indicates that a delay equal to one half period of the highest mode in

the chosen spectrum does not destabilize the system.

The numerical results presented above affirm the Davis-Stenger

algorithm as a practical tool for vibration control of flexible

structures, represented here by an Euler beam model. The results of .

this algorithm provide a means for assessing effects of

controller/observer placement on the system performance, as well as

give stabilizing feedback gains, once the controller locations have

been selected. It was also demonstrated that the underlying model

allows an efficient treatment of delays in the control loop.

38- .
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Figure 31 J(wlversus w for the case'of one controller at .8 and

output at .2
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4. Control of a Two-Dimensional Prototype System

In this section we adapt our frequency domain control system

design procedure to treat a prototype two dimensional flexible system

! "- - a membrane/mesh whose dynamical behavior is sensed and controlled by

S.electrostatic forces. The model is patterned after an experimental

system studied by Lang and Staelin (1982b) as a paradigm for an

electrostatically- controlled large aperature reflecting satellite

antenna.

While the starting point.for the control system computations is

similar to that for the Euler beam, our analysis takes a somewhat

different tack. We shall exploit the appearance of Hilbert transforms

in the derivation of the spectral factor and the simple way in which

these transforms can be used to represent the spectral factor

appearing in the expression for the feedback gain. As we shall see,

there are some significant computational advantages obtained in this

modification of the Davis-Stenger procedure.

In the next subsection we describe the model and compute the

transfer function. In the following subsection we write the solution

for the mbsh dynamical system in terms of the eigenfunctions of the

evolution operator. This provides an effective and accurate basis for

numerically simulating the (controlled) system dynamics. It is

superior to nuwerical solution of the PDE model by finitq difference

Mmethods.

45
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4.1 Dynamics of a Vibrating Membrane

The physical structure of the prototype experimental system used

s by Lang and Staelin (1982a,b was described in section 1.3. We shall

describe the mathematical analysis of the system here. The linearized

equation describing the dynamics of the voltage controlled mesh is

32h T 32h T 2 2O O

at2 .. 2 2 2 M. at .'-W

h=O on boundary of [O,L) x [O,L-

h(O,%,0) ( 0, h: (0, ,) - 0"
t

where the boundary conditions reflect the fact that the mesh is pinned

along its boundary. To reduce the computations, we make a change of

coordinates to remove the derivative term in (1); that is,

:i+_ (2) h (t) f (t) exp, --H t} .?.

2M2
2CL

We obtain 92 f Ta 92f T a a - 0 2C C 0 }--w .W- . -2 U t v...
t2  N3 2  J4 2 4 3  H2  2m

(3) f=O on boundary of (O,L] x [0,L]

f (oct,B) = 0 ft (0,0,) = 0

Let us define thi parameters

-.. Y~2  2V/- "3-.'

(4) a:'= T/M, aB a T8/M, 2- 2""V-/M.-

(4)
0 -w

-au -- expp t V

and using these in (3) we obtain

.• .*o 
o..•'
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3 2 ,a_ 2

2 - s, 2 a ~2 y~
at a(5) f 0 on boundary of [O,L x [0,L]

f ft -0 at t -0

It is possible to reduce the equation further to the standard form for ."

wave equations; but we shall not do this since it will complicate the

boundary conditions.

Taking the Fourier transform in (5), we obtain

2 2p2(-iw) F()= a - 2 - + a t + YF + au

F= 0 on boundary of [0,L] x [O,L] -

By splitting F and U into real and imaginary parts, respectively, we

are led to the following equation

} 2 H a 2H 2-'

(7) a + a H- + 2+W) H- -a v

Our immediate objective is to find the Green's function corresponding 6,

to the boundary value problem (7).

To accomplish this, we shall reduce the problem to a one

dimensional Sturm-Liouville problem. Consider the operator

2 2*'. L~ U-a a u-"w

.':- ". (8) .-

with u (0) - u(M) = 0

Using this in (7), we have

a -2 H L H--aau

H - 0 on the boundary

Lt 47
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3 and so, the Green's function satisfies the PDE

a K

* -: (10)*

K -0 on the bonayof [0,2.] x [0j2]

Let (c.) be the eigenfunctions of the operator L., ,

We shall compute the Green's function in the form

-k-1,' (lO) ,'.'-F'Tl);."~k

We define the weighted inner product

(12) < the> - f a ctos f where ope [ o x I

Substituting the expression (11) for K into (10), we obtain

...

-, (13) a , a"(n ) ' k ('6k ( ) ) (8-T)
k.k=1 k-i k

E': WBut ( n) are eigenfunctions of L

(14) Lk (ac) =k a, k (a

Multiplying both sides of (13) by( ) , J k and integrating over-

we obtain

"* ': (1 [ a" (8) ( 0 (a) - -\(a .- () (- ** ,..;:-] dc

0k i k k l 0 .:).-.:(a
"(15) 0

L
- -I (ac~ 6(8 -TI ) dci

0

which implies (using the orthogonality of and the properties of the

delta function)

48-

• -. /



a 
.1 .a.

%* -S.-.,

(16) . :.

ak(O) = akL) -0

This is a classical Sturm-Liouville problem.

The eigenfunctions of the operator L satisfy

.(2 2"- L% =X k k* ,a* " - .::'

(17) ,

(0) - *k( ) - 0
k k

It is a simple calculation to show that the eignevalues are

S(18) 2 n- ,2,...aa  n.-.r'(1) n  a a,

and the eigenfunctions are

2

(19) n 0) in (n W t) n= 1,2,...

Nov we have to solve the Sturm-Liouville problem (16). Referring

to (18), we have to consider the three cases: X > 0, X - 0, and

X < 0. Note that for each fixed w there is only a finite number of

negative eigenvalues. To solve (16), it suffices to solve

a" - Xa 6(a- n)
(20)

a (0) =a (V) =0

We have dropped the indices for convenience and the term M ( ) which
n

.'. -'. will be handled by multiplying the resulting Green's function by the
,..:.

same factor.
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It is a simple matter to show that the Green's function

associated with problem (20) is

(2) G (cr)) 1 sh ( -n)) Ash vB) 6<0<r.. .- (21) h sh I h41(, ) I89
Ush

where sh(x) - sinh(x). To obtain the desired Green's function

associated with (16), we simply multiply (21) by (E). This gives

2 sin Sh ( sh" '") <a<
_ _ n

"' i (22) Gn ' = s n . l s n )
_ ',"

z. 1 sh 41 Z) sh (1 n) shlIn(L-I)n<8<"
n n L n -n

where ui

2<
Case 2: X=- <0

. -Arguing in a similar fashion we find that the Green's function

-' associated with (16) for this case is

2: ' , i n e 7 ) s h P ( k - f ) ) s h (p ) o < a<. 
.

(23) Gn ' " inSh .n £) sh n h n -8)) n<8<..

4° .1'
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" -" Case 3: X-O

In this case the desired Green's function is

/2'sl ( t -r) o<B<n . .

(24) G (8,n) C .) _

Note that (22) and (23) can be given by the same formula if we

take n to be a complex number (either ih n I or I 1I). Also, (24) can
n n-n

be obtained as the limit of either (22) or (23) asR n  0. However,

' it is best to split the expression as above to maximize computational

efficiency. The procedure we have followed in representing the

Green's function has two advantages over the classical expansion of

. the Green's function in terms of eignenfunctions of the whole problem

(as used in Lang and Staelin 1982b) First, it reduces the

expression of the Green's function to a single sum instead of a double

sum as in the classical representation. Second, the series has a

strong convergence property. Since there is only a finite number of

negative eigenvalues, the main part of the series is given by (22)

which can be expressed in terms of exponentials. This series

converges exponentially fast. In fact, the bilinear eigenfunction

expansion for the Green's function fails in this case since X0  0 is

an eigenvalue for an infinite number of w 's, and the series diverges

in these cases. The complete expression for the Green's function is 4

-. 51
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n1 2.- n no

';. " sin. A i 1..(25-: ) + E noj 2 c - n) .:,>

i -Ci)

sin ~ ~ Si ) sn 41(-T snWn

~Here we have used the notation " .

;:[ (26) no- = rw/

""1

k-i and [no].is the integer strictly less thatno, including the case when .-.-.

.it

i an intger. Also, 

:

U0 not integer
:- -. (27) £[nJ= 0

and•

..(28) snn = 22 - n,2,"

,.. ~Finally, note that the Green's function has the symmetry property ..-.

;'. ""(29) +,, ,8, ,n) K(?,n,ct,8) for n91<< "I

52 _52

• "..=.'.
T) " .

,% . . . ,- , . ," e o , , % . ,, % % .& . , . . % , % •, , . . . . o . . . % ..a.
•~~~ ~ .'a sin sin . .. sh' (A-11), s.h 0) _ ,',_ ,-,OPZ%' .s.'.." ", w e P4 , ,. .,. ,W.O ",T,,@'



*7 .7 7.- 7 - 2- -- 77°

4.2 Transfer Function of the Controlled Membrane

Recall .the reduced form of the model (7). Using the definition

of the Green's function and the symmetry property (29) we can express

" '- the transfer function of the system as

(30) H( a.,,w) W ) f aB  (O L,Bo, n) u (F,,lw) dE dn =<K. >
(

Now consider the piecewise constant subdivision of the rectangular

j I" area of the membrane as shown in Figure 4.1

?A

- ' -.1

"i' "-- - -'"-"

.* . r.@... ho*

Fig. 4.1 Membrane subdivision.
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I 3 Assume that the control input is constant over each small

rectangle

( |)~ Iit =[ I i l X [ j, n + I]  i,j, 1 , ... ,N"'".._.-.-

That is,

(32) u (,Te)=uij ) for i <i+l

Using this, the transfer function can be expressed

" - H ,8,W) 1ff a (ct,8, ,l) u. , Wth,) d dfl -

*.. (33) N N

iB . a u <T&ljf.....'d:d.i-l J 8 1

" . To compute the integral over f2"- it is necessary to distinguish

three cases: 8 < j., 8 > nj+ 1 and 8e I nj nj+ -"'"

Case 1: 8 < T-

Substituting the expression for the Green's function (25) into

" "(33), Ye obtain.w
,-. ff i ,8 ,n d~df .. :

ii [

." .2 ff 2. sin )sin Tr a sin Q/n (in)) sin 41n6)d~dr
"2 nij niln

.. ,.;n-1 z n

ij V s ?-'-. nk)

(34)
"n 7r

t~~E sin E) "sin ( , (-)dtdn "-

,[.: Z :"F si ( "L".j

,=. -: i ....4

:.. -: :.:7:.



.+. 2° n+f 2s - sin -) sen -c) ,h , (L-i)) ",Oin) d '.'..

9', n-t n o+1 9 )1 sh tg)."
.0 n n

Each of the integrals in (34) may be computed in closed form. We

shall omit the details and state the final result

K U,8, n) dtd
ij

(ni-c n '

0. 2 s in I i n 1 ) on --

n-i 2 k vi1"n j+1nl-The - sin ea1 Z) t

.I" ,1,; n a n CO -Co

2Cr 7r _c-t-r T2

(35 +" i-
I.i ch+n -) -1 s-+,

+ a) Sh) 4h% ' 1 ) nwn nl)'"._

,. _ osi) ea - - ")-Cos - "
n-("J n I + 2 41 Z -ch (.)o ni~1 nhOCO i n +

Case 2: 

.

j+

* The final result in this case is

XtK~t8~n d~di FCO Ojrl.
I io 2 sin %Z W sinU~ (91-0) o2T )-Co i~C s

n L+ -CS( i4

(36) n--1 fllT). sin 0n Z~)

2 2
n0 A~ 7 ~r-it ) -Y

- + sin Wi (9. a2-) S( i -- CosC2

rb 'T I: ,i.? 2

-* - ~~2 sin n'j-ct) shij (4~8)fo ~ .- o

* *..* n-E ~in 2 +1.
0lrJ 2 *'ci (pi -

Case 3: 1 ZJ.

55. 8-?
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This case may be treated by substituting 8for n. in Case 1 or

for n+1in Case 2. The final result is

ff i *:t 8, , n) d~dT1

(n 1]- 2sin 9!La)-cs(-)m~~~ n)nisnt

2 - ji~ +si[@Si

n-1j)c ninif sin 0 ]+ n.1sO 9.)
*n n

+shiz 8) chx ht8 41h~ (t-TiVi. 41 n]

+ I-Csi1

91 9 
-

56r

c42si C

+sh~p 0) ch (4'n (Z - -c* (4 n -rl i n- .]+
n~~ 0. nnsh(



4.3 Solution of the elliptic system using the

discretized Green's function

We can use the discretized Green's function as the basis for an

effective algorithm to compute approximate solutions to the system.

1L The algorithm is more efficient than direct numerical integration of

the partial differential equation. In general terms the procedure is

as follows: Consider the complex elliptic PDE

2 2aa H+b - + pH -bH in "
ax a

(38)

H =0 on 30, Q O,L] x [O,L]

where a and b are as in (7) and p is a complex parameter (which will

depend on the frequency w ). Let

22n abL b
- no =E[pL2/aw2] ann bi -r2 . '-

.': < 2 (39) 0

(9 -l no integer
C0 0) otherwise

Assume that the domain 2 - [O,L] x [O,L] is subdivided into small

rectangles as in Figure 4.1

": :.:. (40) ij =[xi, xi+ 1 * "x yi, Yj I i=I,...,N, j=l,....,M-'.- ..."
ii i+l - j+11

" Let h - L/N and k - L/M. Assume that the control is constant in space

over the rectangle and defined by its value at the center. That
1)

- . is,
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L.+ yj+yj+l
(41) u (X,y,p) = uiP) U 2 2 p )

Let G. ij (x,) be the average Green function over i

(42) G. (X,y,p) HO K (,y,En,p) dgdj

L . .ij

Then the solution to the complex PDE is given by

N M
(43) H(x,Y,P) = - - bu (p) G (x,y,p)

i-l j=1 ij

We introduce the change of notation

G. (XYP) = (XXi 1.

(44)
°.UL ij * ) u (Xi +lYj Yj+l,p)

which will be useful in programming the algorithm. The function

G.j(x,y,p) will be given by the following expressions:
13

(45a) ij 1 Y, xiP)i+l ' L-y, L-yj, L-yj+ , p)+ (-1,y < y

G (x,y,p) C7= (Xxi,xi+ly, yj,yj+l,p) +G (,yj < y

(45b) liil' 7  ~ 2j
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. (45o) G (X,y,p) - G I X ,y-yjry,p ) +G (,xi,xi..lL-Y, L-yj L-Yp)

y. Y< y_.-V " - -j+Il_,

where

2nITX2 si (--- sh Un .-y) Ir., %_1-) .{ 2 Ln~

n7rx n7rx i+
-Cos x {ch 4ly.+) -ch (11j)Y

{cS L L n + f

i.'.~ ~ --fntx  ,, noV no~ I-.

(46b) G2 - H VIC nI' nj n L -)L- -Co

X 2 2 .-.2 J+n 0
(46."b-)x2 % = J l - i )  "'""" %-X~ 1

The computational algorithm based on this representation of the

solution is given in Figure 4.2.

4.4 Eigenfunction expansion of the solution

of the generalized wave equation

In this subsection we shall use an eigenfunction expansion to

solve the system (1) as an evolution system in time. Using the

exponential transformation (2) we can rewrite the system as

*2 22"'" ' '[8_ +b '+dg +bu in a[2i
• ~ ~ ~ a a-," x ay.,-

(47)

I., L g-O on g(x,y,t 0 ) go(x'y)' gt ,Y't0)= g9 c,y)
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Here ve use general boundary conditions since ye want to use the

solution to simulate the response of the membrane system to inputs

based on its state at a given time. Our solution -7 expressed in

terms of an eigenfunction expansion. Let n (x,y) be the

eigenfunctions of the operator in (47) and suppose that the data and

L the control function have the form

u ', ,yt) Z u t) n (x,y)

m,n mn Mn

( 4 8 ) 0 x y t )r O n x y q
xg (x'ytO) .. --. .C-y)

* -. m,n 1 m,n

We look for the solution in the form

(49) g (,y,t) M E ( nt) @ 'y)
m~mn

This leads to an eigenvalue problem

(o 2 2 mn mn ton

0n~ onM

C and an initial value problem

a (t) C& a_ (t) +b u (t)
a .(()) am On mn M
a (o)-=r , a. (o) =v

A simple calculation determines the eigenfunctions

(52) (mn Y) sin (T) sin

corresponding to the eigenvalues .,,_

va5-

() X~ -d- a 2+b pl) ]
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The initial value problem has different solution forms depending

on the sign of X . Let t0 be the initial time and let tf - t0 + T,

where T is the sampling period. WhenX < 0, we have
.m b v1 -cos $

CL (t ) r coo 41 T)+ sin(J T)+ * Rn
mn f in I mn

WI h nI U h

• ;..

(54a) WIinU. T

When X. 0, we have

T2
-(t) r + i' T +b

rn f R UI -an 2

(54b) &l (tf)V + bUWIT

When X > 0, we have

hifl

(54c)1 &(f=JrWsiIT) + vM h (WT) + u sh IMT) -

_ These expressions permit us to solve the membrane system from any

-'. ~initial conditions for any control input satisfying the condition that "

(t". r c-O

it be constant over the area of the mesh element in Figure 4.1.

: * .- ..,

-- U

These exrsiospritu:osov.hemmrnesse fo n
inital cndiionsfor ny ontrl inut atisyingthecondtiontha

"e. -1 ".',' " "i t"" " b e-- .c-o-n s t an- t .. o. v er..- .. - .th e, • • a r-e•a -o• •f -t• .h e• • m-e s•h. • •e l• -. ..e-n. .-. ...n F-.i- ,g- -r e ..-4 -,' ..
.0.• " - " . o "- o.. " . " ,J ' , , '- - -, ' ' ' '
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4.5 Spectral factorization using the Hilbert transform

Computation of the optimal stabilizing kain based on the Davis - :

Stenger spectral factorization procedure used for the Euler beam

problem proved to be infeasible in treating the two dimensional

system. The computational effort was too high to be practical; and

it was necessary to redesign the algorithm to achieve greater

numerical efficiency. The key idea was to use the Hilbert transform

"" :'to represent the spectral factors arising in the calculation. This -',

permitted the use of fast and efficient numerical Fourier transform

techniques in the gain computation algorithm.

Given a Fourier pair (fF) in L2 xL-.

(55) fx W L-x (s) ds, F (s) r sXf(x)dx

the Hilbert transform is defined by

____ 2f- (r dr CL
(56) m(t) - .-.-d.-

.7! - t-r

where the integral is taken in the Cauchy principal value sense.

Givjen a complex function

(57) T(s) R(s) + iF(s)

then

(58) HT( w) HR( w) + iH}'( w)

k.,,.*

62

%'.~ %,. %- L. . . . . . ... . . .. . .. . . .. .. . . . . . . . :: :



The inverse Fourier transform of HT satisfies

* (59) F_1 fliT) -isgn(t) F-1 fT) __

Ifsw define

T - - r-i E), T- -

(60) +- 1

then .L.

0 t>O 0 > 7
'6) -1

(61 C: t'4) 0 0J -.

This means that T +(respectively T ) is the projection of T onto the
2 ~2 2

space L+(respectively La with the obvious intepretation of L + and

L.

Nov consider a function f(x) satisfying the condition .7

(62) lim f(x) -1

2
if * (x) f(x) -1, then *e L .Applying the previous results to

L; the function

(63) (Fx) l og Ef(x)]I

(with the proper choice for the branch of log), then

(64) f~x W f+(x) f -W

where f+ and f- are the causal and anti-causal spectral factor.,
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respectively. For instance,

(65) f-(x) - f(x) explli Hiog f(z)1

2

This expression is used directly in the computation of the optimal :.

stabilizing feedback gain by spectral factorization. :.:

4.6 Gain computations

In abstract form the control system (1) takes the form

x(t) -Ax + Bu

(66) y(t)- Cx x x().-

The transfer function is . .

(67) G ij)) - CR W-o:A) B

where R(iw ;A) is the resolvent operator

(68) R (iw;A) - W-A-

If we compute the spectral factor of I *G*G

(69) F W3) F (oa- (I+c?G) (1w)

then the gain is given by
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In the present case the components are

• (71) 3' -
- xx~+ W in + d  "''

And we shall take

.'-~ 0 , -".

(72) c-i2 2 B.L)

L k 2
which allows for weights on both the displacement and the velocity.

The resolvent operator is computed by solving the system

(73)

which leads to the system

+ b - (2-cs) f= (cu-v) -su

(74) 

.x..

f=O on W, g-sf-u

The associated transfer function is

(75) Giw W ) .

-k 2 92 OW)•

where I"','

65
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a2 9 2g
' 2g 212

Sa - +b - + 2+ic ) g.-
(76) 2 2.

gon al g 2 =ig

Therefore, if we define H(iw) - (I + *G)(iw ) we obtain

2 2

(77) (iw) + (K K ) ( ) ,.

Let the state of the system be defined by

(78) x(t) M j

.* and let

.I (79) 9 (JW A)-,-:":''

and let g1 satisfy the complex PDE (76). Then the stabilizing

feedback gains are given by

1~" (i-'"-"

h cF 2
(80) ~ ~ - 1) ~ w G 1 w 2

+ W2 - 1

* • 4.7 Software development and control system performance

Fortran code has been developed to implement the control gain

S"computation (80) using the Hilbert transform representation (65) for

S'the anti-causal spectral factor of the return matrix. The code

includes the simulation algorithm for the system response to the

control as shown in Figure 4.2. Testing of the code has been carried

66 : i
* ..,,.-



out for a few values of the weights in (72). The results indicate

that the stabilization of the system in significantly enhanced by the

P control action. Since we take the damping in (1) to be positive, the

~ system is stable for small enough bias voltages. Modest values of the

control weights (10 on a normalized scale), produce a 20% improvement

ILL in the settling time of the system. Kxtensive testing will require an

upgrading of the numerical routines in the code to produce faster

solutions of the system.
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Figure 4.2 Algorithm for control gain computation and simulation
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Part II:

Effective Parameter Models of Heterogenous Structures
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5. Homogenization of Regular Structures

It is now generally accepted that large, low mass lattice -

structures, e.g., trusses, are natural for space applications. Their

large aiz'e and& repetitive infrastructure require special techniques

for structural analysis to cope with the large number of degrees of

freedom. As Noor, Anderson, and Greene (1978) point out, continuum .

models provide a simple means for comparing structural characteristics

of lattices with different configurations, and they are effective in

representing macroscopic vibrational modes and structural response due

to temperature and load inputs. Our approach to the construction of

such models is presented in this section. In the next two sections we

consider the problems of control and state estimation in combination

with the construction of continuum models. We shall begin with a few 0

remarks on related work on continuum models in the recent structural

mechanics literature.

Noor, et. al. (1978) use an energy method to derive a continuum

approximation for trusses with triangular cross sections in which the

modal displacements of the truss are related to a linearly varying

displacement field for an equivalent bar. In (Dean and Tauber 1959)

and (Renton 1969), exact analytical expressions for the solutions of.

trusses under load were derived using finite difference calculus. By * **-

expressing the difference operators in terms of Taylor's series Renton

(1970) vas able to derive continuum approximations to the finite

differen~ce equations resulting in expressions for equivalent plate

stiffneuses, for example. In a recent paper Renton (1984) used this
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approach to give equivalent beam properties for trusses, and this

5 complements the earlier work of Noor, Anderson and Greene (1978) and

Nayfeh and Hefzy (1978). (See also (Anderson 1981).)

In these papers a continuum model is associated with the original

(lattice) structure by averaging the parameters of the lattice over

some natural volume (e.g. of a "cell" of the structure) and

identifying the averaged parameter value (mass density, stress tensor,

etc.) with the corresponding distributed parameter in the continuum

-model. A specific form for the continuum model is postulated at the

* outset of the analysis; e.g., a truss with lattice structure will be
r-

approximated by a beam, with the beam dynamical representation assumed

* in advance. While this approach has an appealing directness and

simplicity, it has some problems.

First, it is very easy to construct an example in which the

"approximate model" obtained by averaging the parameters over a cell

1E is not a correct approximation to the system behavior. This is done

in subsection 5.1. Second, the averaging method (averaging the

* parameters over space) does not apply in a straightforward way to

systems with a random structure, since the appropriate averaging

procedure in this case may not be obvious. Third, the method cannot

be naturally imbedded in an optimization procedure; and controls and

state estimates based on the averaged model may not be accurate

reflections of controls and state estimates derived in the course of a

unified optimization - averaging procedure. The method does not

I provide a systematic way of estimating the degree of suboptimality of

controls and state estimates computed from the idealized model.
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in this work we use a totally different technique called

IM homogenization from the mathematical theory of asymptotic analysis to

approximate the dynamics of structures with a repeating cellular

structure. Homogenization produces the distributed model as a

I L consequence of an asymptotic analysis carried out on a rescaled

version of the physical system model.

*Unlike the averaging method, homogenization can be used in

combination with optimization procedures; and it can yield systematic

estimates for the degree of suboptimality of controls and estimators

derived from idealized models. Results to this effect are given in

Isections 6 and 7. While our results are preliminary, they

nevertheless demonstrate the feasibility of the method; and they

* suggest its potential in the analysis of structures of realistic

complexity.

In this section, we first give an example illustrating some of

SEthe subtleties of homogenization; then we discuss homogenization for

abstract hyperbolic systems; then we illustrate the applications of

-: homogenization theory by deriving a diffusion approximation for the

thermal conductivity of a (random) lattice structure. In the final

* example we derive a homogenized representation for the dynamics of a

lattice structure undergoing transverse deflections. We show that the

behavior of the lattice is well approximated by the Timenshenko beam

equation; and we show that this equation arises naturally as the

limit of the lattice dynamics when the density of the lattice

structure goes to infinity in a well defined way. The mathematical

analysis used in the derivations is based on the book (Bensoussan,
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Lions, and Papanicolaou 1978) and the paper (Kunnemann 1983)."

5,l A one-dimensional example

*" From (Bensoussan, Lions and Papanicolaou 1978) we have the

following example:

d e duo
(x- ) =f () x C x 1):.

u- (X (0 u (X

where a(y) is periodic with period YO, a(y) > c > 0, and a'(x) -

a(y/e). It is simple to show that

(2 e1

CX W C (x12 + .4 (x), 2 c .-1_

-.,:c(2) H u I A f u dI <u --a

and so, u -u weakly in the space'HL• Moreover,

(3) ac M (a0f a(y) dy

YO 0

E and it is natural to suppose that ue u with the limit defined by

M (a) d )] - f(x) x C CXo 0 '1)
(4) - dx

u(X ) -0 u (x )"
' 1.,- .-

This is untrue in general (Bensoussan, Lions and Papanicolaou

*We are grateful to Professor George Papanicolaou for bringing

Kunnemann's paper to our attention.

73

.. I. " ~ *% ****.7 :~ I.. : '" 4



~ -...........

1978, pp. 8-10). The correct limit is given by

( -" C [  u)] f6), XC¢co x ), u (xO) -0- u (x1)

.. ' , - . -with u (X) mOuuc L

(6) a -

In general, 1(a) > a; and so, the error is identifying the limit, (4)

. versus (5), is fundamental.

The system (4) corresponds to averaging the parameter a (x) over

a natural cell; a procedure similar to that used in (Noor, Anderson

and Greene 1978), (Nayfeh and Hefzy 1978) and (Aswani 1982) to define

continuum models for lattice structures. As (5) shows, the actual

averaging process can be more subtle than one might expect, even for

simple problems. :. -

To see how (5) arises, let

(7) F,,),,e ( x) u-a, Wi 4' 'e'dx

Then :(x) is bounded in L2 (xoxl) and it satisfies

dxx-( d , (x)-f (x,), x e (Xo,xl )

One can show that e (x) has a strong limitg (x) in so

,o £..-a

7:. (9) e a-:,-
Sa~

*weakly in I? (x x) But,.." ... ,,%y.*, ,, . t"""

"'7* -. ,. -

, ,. ...8,,*
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%T'

duu

S(11) =

dx

i ~ ~and since ,"

(12 d&; f

we have .

d "( M( 1 -1 du
(13) 3i a ..

and the limit uc* u is weak in H1(x,x2 (the Hilbert space with norm

defined by (2)).

This example illustrates the pitfalls associated with simplistic

averaging procedures.

5.2 Homogenization of Wave Equations

As shown in Part I of this report, hyperbolic (wave) equations

are the most natural models for the dynamics of flexible structures.

General techniques for homogenization of wave equations are available

(Bensoussan, Lions and Papanicolaou 1978). The precise form of the

homogenization procedure depends on the scaling of the physical model;

i.e., the dependence of the system characteristic features on small

parameters. Since this is a sensitive modeling issue, we shall ""

discuss it in some detail. It may be necessary to consider several

scalings to determine the one most suitable for a given class of
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flexible structures.

Consider the Klein-Gordon equation

". tX) (x) Vu(t,x)] -3(x) u(t,x)
tt

(14)
u (,X)-f (k) u (ot)-9 (x), t>o, xc

t

where f and g are smooth functions of compact support, c2 (x) > 0 and

W(x) > 0 are smooth. Suppose c(x), W(x), f(x), and g(x) depend on a

small parameter e > 0. For example, suppose c and W vary slowly with

X, so we have
°2.2

( ) c- 2 (E x), W-W (C x)

and suppose

(16) f fE g g g'

Let u be the solution of (14) with (15) (16). The behavior of u as

14 't0 in (14)-(16) is trivial if we consider (t,x) fixed. However, if

(t,x) become large as C *0, then an interesting limiting behavior

emerges (Bensoussan, Lions and Papanicolaou 1978, Chapter 4).

To see this most clearly, it is necessary to rescale t and x as

(17) t = ,

Dropping the primes, this yields

C2 C(t': X)-' -V (tx"'C2WVu ltIXl W) Ju IX
./ "-. tt 2 tx "" ....

(18) -
• u (o'x)-f , ut  ; X- Rn, t >o0 ..

..

Notice that in rescaling a system with slowly varying coefficients,
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A. -.

one produces a system with a large coefficients.

To complete the specification of the problem it is necessary to -

define the dependence of the data f E and g e on d . The various choices

strongly influence the final form of the limiting system. Following

[ (Bensoussan et al. 1978), we shall distinguish three classes of data.

,A Case 1: Low frequency problem

*][ In this case fe and gC have asymptotic power series expansions

( 1 9 ) f (X ) N f0 W'
g (X) ^ gO W + C .'. . 1-.-,

where the terms in the expansion are smooth functions. To produce a

problem with finite energy as C .0, it is necessary to take fo(x) = 0

in (19). (See (Bensoussan et al. 1978 p- 541).) Since the problem

is linear, it is not necessary to have the expansions begin with t

The analysis of this problem is comparatively simple, and the

limiting behavior as co 0 is elementary.

Case 2: High frequency wave propagation in a slowly varying medium

In this case th9 data take the apparently specialized form
• =, 

,".-'-"

o:f¢ W N" exp 0 1 s (x) / I f€ Wx :.

(20) , x.'i .)'
9 (X - exp is (X) /C g¢ (x)

,* _.-,
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where S() is real-valued and smooth, and and e are complex-valued

and smooth and have asymptotic expansions like (19). Note that the

data in (20) are complex-valued. Since the problem (18) is linear,

*both the real and imaginary parts of u are solutions.

To understand the physical significance of the second case, k

suppose the "phase function" S(x) - k x, where k is a constant vector

V- and dot stands for the inner product in R2 . In this instance the data

in (20) are spatially modulated plane waves with rapidly varying

phase. As shown in (Bensoussan et al. 1978) virtually all cases of

interest (different scalings leading to nontrivial limiting behavior)

can be analyzed in terms of this case. For instance it is possible to

treat the case of wave propagation in slowly varying media with -"*

i spatially localized data or the form

l-n/2

f"(x) - f(x, )

(21)
g. W -n/2 x . - .

where f and g are smooth functions of compact support in x and y

."(x/), and (x,y) £R2 . The scaling on the right in (21) is chosen

so that the terms are of order one as e+ 0. Problems with forcing

functions and/or inhomogenous boundary conditions can also be treated

by essentially the same method. "-.

The treatment of case 2 given - (Bensoussan et al. 1978) is
'. ,---

based on the ideas of geometric opt -,. The solution uE is sought in

the form

C, 78
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u~ (x,t0 e iS Xt v (X, t)

(22)
v (X, t) -v 0  (X, t) +ev1  (X, t) +..

Inserting (22) into (18) and equating coefficients of equal powers of

C leads to

(23) 1 V1  A 0

A v +Av 0Av-(2) 121 21 30

where 2 2 2
Al -c (VS + (S ) -

2 2
A n2 i S (VC a) + ic V S V iS

2 t t

(24)22

A 3 V (C V)-a3

The analysis of these equations leads to the reduced model for the

system behavior.

From the first expression in (23) we see that for v0 not to be
0

identically zero ye must have

(25) S- (c 2() S 2+ 1/2 0

This is the eikonal (or Hamilton-Jacobi) equation, a nonlinear first

order PDE which controls the evolution of the phase function. It may

* * ~*be solved in terms of a system of nonlinear ODE's (Hamilton's

equations) for the "rays" and "momenta" associated with the

propagation of energy by the system. (See (Bensoussan et al. 1978,
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The choice (25) for the phase makes the operator A, identically ,.

zero. Using this in the second equation in (3) leads to the

"transport equation"

(26) A2 v0 -0

Its analysis leads to expressions for the propagation of energy in the

system. L

The case of spatially localized data (21) may be treated using

the same techniques in combination with the method of multiple scales.

. e shall not develop the analysis of these general systems in more

detail. Rather, we shall turn our attention to the construction of

continuum models for lattice structures.

5.-3 Continuum approximations for lattice structures ,,.

In this section we shall apply homogenization and the associated

S"asymptotic analysis to derive continuum approximations for two

different types of problems. In the first case we show that the

problem of thermal energy conduction in a lattice can be well

approximated by a diffusion process in the macroscopic scale. In the

, second case we show that the in-plane macroscopic (2 dimensional)

motions of a simplified truss model can be well approximated by the

Timoshenko beam system.
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5.3.1 Effective conductivity of a periodic lattice

A. Problem definition

* " Let Z - 10,+1,+2,..o) and - Z x...x Z (d times) be a

d-dimensional lattice. Let C >0 be a number small relative to 1. We

want to describe the effective conduction of thermal energy on the

-- spaced lattice C . Let ei - (0,...0,i,0,...0) with I in the ith

position, i - 1,2,...,d. If x is a point in Zd, then x + Ce1 ,

I < i< d, are the nearest neighbors of x. Let ai+(x) x zd

1 < i < d, be the two functions defined on the lattice, and assume

(26a) a.c):-a (x) =a (x+ei) x £ zd, 1 i < d•. ... ai  ai+ : i

d < <
(26b) 0 < A a. (k) - B < x C Z , 1 = i = d

(26c) *a (x) is periodic with period 2, > 1 in each direction,*

1 < i < d.

Next let

(27) a (x) ai x/) xEcZd 1 i 9 d

Equation (26b) means that the conduction process is reversible

and that the conductivity a( x) is a "bond conductivity", i.e.,

independent of the direction in which the bond (x,x + ei) is used by

the process.' Equation (27) means that the configuration of bond
conductivities a* .) one . is simply ai+() on Zd "viewed from a

L distance." Assumption (26c) imposes a regularity condition on the

*The period may be different in different directions.
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physics of the conduction process. An assumption like this is

essential for existence of a limit as e 0. In one dimension the

situation is illustrated in Figure 5.1. A system similar to this was

treated by KUnnemann, (1983) with random bond conductivities.-*..

Ergodicity replaced periodicity in (Kunnemann 1983).

A

Figure 5.l.a. Conductivity on unscaled lattice with period L6

/~ 
7f%-

N0.-

Figure 5.1.b,. Conductivity on e-scaled lattice, y e x, with

x e Z and period c2s 6

One can associate with this system a random (jump) process

Ix t~),t > 0, xe CZ Ion the E-spaced lattice*. In effect, as

C -; 0, XC converges to a Brownian motion on the lattice; and the q

main result of the analysis is an expression for the diffusion matrix .

*Definition of this process is not necessary for the analysis, but it

bolsters the intuition.
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Q: i[q i ,j - 1,2,...,d] of this process. This matrix describes

the macroscopic diffusion of thermal energy in the system. It is the

effective conductivity.

We shall carry out the asymptotic analysis of this system in the

limit as C-1O using the theory of homogenization. Let

(Viu) (x): - Eu (x-Ce)-u (x)]

(28) +
( U) (x: uZd  e)-~~

X.Z , 1 S d,

for any u square summable on Z or square integrable on Rd with e

dthe ith natural basis vector in R . Then

au (tx) md -- C ( tx)
V-[ V e@) V. u (')

at. i C I
*-" (29) i--

--L U (t,x)

is the diffusion equation on the E-spaced lattice with density u(x)

and conductivity a1 (x/e). Our construction of an effective parameter

representation of the thermal conduction process as e + 0 will be

based on an asymptotic analysis of (29) using the methods in

(Bensoussan et al. 1978).

-, .' Remark: Although we shall not use probablistic methods in the

-- analysis, the associated probabilistic problem has a great deal of

intuitive appeal. The operator L e may be identified as the

infinitesimal generator of a pure jump process X£(s) in the "slow"
L time scale a: E t; cf. (Breiman 1968). Moreover, L is
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d
selfadjoint on Z with the inner product

' ": (f~V') •" £ (f W lg Wx ';
(30) xczdf").E

Hence, the backwards and forwards equations for the process X (s) are,

respectively,

Eap (Ytlx) - Cp£(yutI-]Ix)
at -

3)(31)

-p (y,tlx), -[L£p (.,tlx)](y)
at

So the process is "symmetric" in the sense of Markov processes

(Breiman 1968).

The asymptotic analysis of (29), when interpreted in this

context, means that as the bond lattice is contracted by e and time is

sped up by C , the jump process Ixe(s)} approaches a diffusion

process with diffusion matrix Q. In other words, on the microscopic

scale thermal energy is transmitted through the lattice by a jump

process; but when viewed on a macroscopic scale the energy appears to

diffuse throughout the lattice. The microscopic physics are described

. in (Kirkpatrick 1973) and (Kittel 1976).

Because the basic problem (29) is "parabolic", we can introduce

the probabilistic mechanism and make use of it in the analysis. In

the "hyperbolic" problems we treat later, this device is not

. available.
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rT
B. Asymptotic analysis-homtgenization

The essential mathematical step is to show strong convergence of

3 the semigroup of L say

(3"T (t):exp(L t)
i (32)

Tit M=exp'lMt)

and identify the limiting operator

d a2
i .-.- (33) L- Z. Mi x x
... i,j l i

This is accomplished by proving convergence of the resolvents

(34) for a > o, [-L.E +a] - -L+a]-l

That is, if f is a given function and

£ E -

U (.):=[-L+at] f

(.):-[-L+zl 1f

then u u (in some sense).

The method of multiple scales developed in (Bensoussan et al.

1978) will be used to prove the limit. Because the conductivities

a (x) in (29) do not depend on time, we may work directly with L[ " i
rather than the parabolic PDE (3) (cf. (Bensoussan et al. 1978

Remark 1.6, p. 242). The method of multiple scales is convenient

because it is a systematic way of arriving at the "right answers" -

something which is not always simple in this analysis.
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oJFollowing (Bensoussan et al. 1978) and bearing in mind (35), we

consider

(36) (LCu) (x)-fW(x)

with boundary conditions to be specified later. We shall look for u

in the form

(3)u £ xA C (xM 2 NAh+.
0 CC 2__

i:":(37) u (xlmuolx.E)+CUl """)+- 2" "

d .-
with the functions u (x,y) periodic in y c Z for every j O, ,,....

(As it turns out the boundary conditions are somewhat irrelevant to

the construction of "right answers.") To present the computations in a

simple form, it is convenient to introduce y - x/c, to treat x and y

as independent variables, and to replace y by x/c at the end.

Recall the operators V from (29). Applied to a smooth

function u -u(x,x/e), we have

." -£u) tx,y) U u(x-ce i , Y-ei-u c,Y).

(u (y-e i) -u y)]

1:-1 l u) y-) -u +,-e) v'- '
.. : + [u (x- e., y--.."~y-

1 2
.u a u ('-2"+.

where on functions 0- 0(y).
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Defining

S(40) (V -"" y+ei) - *( :(Y)

S:-:, we also have '

1 +V)(xVI, (u ) (e.j2u(XY+y ) +0 L ...

(41) (V u(x,y) x ( X 3x (xy+ei) + 01 (

Now we substitute (37) into (36) and use the rules (39) (40).

Equating coefficients of like powers of c, this leads to a sequence of

equations for U, u ,... Specifically, (using the summation
0 1

' 'convention)

"u) (X,y) - -V i V1 i

i iu
-V C [ a au  0 ,y+e )]

1 2o

(42) i - cV i [a. ( ) -- ,y+e) +0(C)

. !V [a kfy) V u CY)"

au
- 1

u x iY)] +0 ) f(X

That is, labelling each term by its order in ,

(f,)( V, V7ai(y)V+ u0
3  0'- -"(43) i,0; -

. 44 £- [ai (y) L2 (x,y+e )]+V (a (y)v u (x

- and (recall V t+-  0(1) in c)
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.2u
: i  (a fly) jx. (X'y+e,)]

0 e,2 au :;(45) o (xy+e )]

S - - a ) V+ u2 KY)] f (x)

From (43) we have 
w

a. (y-e u (x,y) - u (y-e ) ".

(46)

-ai (Y) [u (xy+ei) -u 0 0,y) m L

If we take u0(x,y) uO(x), this is trivially true. (We must justify

this choice in subsequent steps') And (44) simplifies to

(Y - + % (X,' ") 0 '-

(47) £V a (y) - (x) ] +V. [ai(Y) V 
-'."a

£At this point we invoke a standard device in homogenization asymptotic

analysis, namely, the use of "correctors." We assume %'
d aul

0
(48) Ul(X,y) m Xk(Y) . + u(X)u"(48) U

k-1 k
with xk() the correctors. Using this in (47), we have (agair

using the summation convention)

- au °  a u o
- + 0~Y) 0~~1(a:i -- V ( + [ak (y - ek )- ak (y )]

(49) Vi (ai(y) V. Xk( ON +x k k.k-.0

O~"- 'k.'

If we take Xk(Y) as the solution of
k+

(50) V1 [a1 (Y) V×Xk(Y()] + [a (y-ek) -:.
... 'C.. .- ..

',- (we have to verify the vell-posedness of (50)), then (49) is£I
satisfied. (The term () is determined (formally) from the 0(C)
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4'' term in the system (37) (42).) .

Regarding the well-posedness of (50), note that

(s) Vi-[ai(y) V. f(Y) I T ' (Y)

has a periodic solution onEZd which is unique up to an additive

constant if the average of the function '(y) over a period (ei) is
,I..';.

zero; i.e.,

-: (52) Z " - (y+k )- 0 n-1, 2;,... d
Ik-I

* r' This condition clearly holds in-'(50), and so, Xk(Y) is well defined

(up to an additive constant).

We shall determine the equation for uo(X) by using (48) (50) in

(45). Using the Xronecker delta function 6 ik9 we have
•ai ' ) Sik'

*: . a x a x : ' V

axiaxk

-, =~~~{ Vi - [ ai )6ikJ -Vi - [ ai 1 Vi+t Xk] } ai ...

.-V1.- ai () x ky)] 2 - -fa (y)V *u ]

i k i i 2
The term in braces is zero from (50). To obtain the solvability

condition (52) for u2 in (53), we introduce the average

(54) qik symmetric part ( { -Vx a)
2ii i~ k

Then solvability of (53) for u2 gives the equation
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a~m - ~.. -

* (55) q 0
Ai 3x "- f (x) "..

ik-1

And this is the diffusion equation which defines the limiting behavior

of the system (36) in the macroscopic x-scale in the limit as+0..

We can justify the asymptotic analysis by using energy estimates

or probabilistic methods as in (Bensoussan et al. 1978). (See also

Kunnemann 1983).) We shall omit this analysis here.

:* S C. Summary

Returning to the original problem (3O) for the evolution of

• .thermal energy on a microscopic scale, we have shown that the thermal

density u(t,x)*u u (t,x) as C+ 0 (in an appropriate norm) where

d 2
(56) aU0  a 0

t 2 ~ q1  x x
ati,j-1 ax a

with

j * [a. (a 1.Y) l
(s7) .- - k- l

+Vk [a ak f)X(

.and the correctorsXk, k i 2,...,d, are given by

[ .i ( VY) aXk ain' (] ck) 'ak (-Y)

.. (58) --
k_ 1,2,...

To compute the limiting homogenied model (56), one must solve the ...

system (58) (numerically) and then evaluate the average (57).
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The fact that the original problem (30) is "parabolic" (i.e., it

describes a jump random process), enables us to exploit the associated

probabilistic structure to anticipate and structure the analysis. In

- this way we can anticipate that the limit problem will involve a

diffusion process. In fact, the arguments used are entirely

analytical* and the limiting diffusion (56) is constructed in a

systematic way. It is not postulated.

5.-3.2. Continuum Model for a Simple Structural Mechanical System -

A. Problem definition

Consider the truss shown in Figure 5.2 (undergoing an exaggerated

* -. deformation)

_ . :.:: .. :

Figure 52. Deformed truss with triangular cross-section...

robFabiuitrc argumentscan 5.2 be ous withrssan et l. 1978, Chapter );

* a'.'and they have some advantages.
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We shall assume that the truss has a regular (e.g., triangular)

m U cross-section and no "interlacing" supports. We assume that the

displacements of the system are "small" in the sense that no

components in the system buckle. We are interested in describing the

dynamical behavior of the system when the number of cells (a unit

between two (triangular) cross sections) is large; that is, in the

limit as

(59) 0-= ,/L * o

We shall make several assumptions to simplify the analysis.

First, we shall assume that the triangular sections are essentially

rigid, and that all mobility of the system derives from the

flexibility of the members connecting the triangular components.

Second, we shall ignore damping and frictional effects in the system.

Third, we shall confine attention to small transverse displacements

n(t,x) and small in plane rotations V(t,x) as indicated in Figure 5.2.

We shall ignore longitudinal and out of plane motions and torsional

twisting. Fourth, we shall assume that the mass of the triangular

* cross members dominates the mass of the interconnecting links.

Systems of this type have been considered in several papers

including (Noor et al. 1978) (Nayfeh and Hefzy 1978) (Anderson 1981)

and (Renton 1984). In those papers a continuum beam model was

hypothesized and effective values for the continuum system parameters

were computed by averaging the associated parameters of the discrete

system over appropriate cell volumes or areas. Our approach to the

LL

i.': "" problem is based on homogenization-asymptotic analysis and is quite ...
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different from the methods used in these paper.

pThe assumptions made above simplify the problem substantially. 7

By assuming the cross sectional components to be rigid and ignoring

out of plane, longitudinal and torsional motions, we have effectively

eliminated the geometric structure of the truss. We can retain this

structure by writing dynamical equation. for the nodal displacements

'] of the truss members. For triangular cross sections nine parameters

describe the displacements of each sectional element. The analysis

which follows may be carried over to this case, but the algebraic

complexity prevents a clear presentation of the main ideas. As

suggested in (Noor et al. 1978) one would need a symbolic

manipulation program like MACSYNk to carry out the complete details of

the calculations. We shall take up this problem on another occasion;

'for now we shall treat the highly simplified problem which, as we

shall see, leads to the one dimensional Timoshenko beam (and from

there, under certain constraints on the parameters, to the Rayleigh
"I,- and Euler beam models).

We shall begin by reformulating the system in terms of a discrete .,.

element model as suggested in (Crandal et al. 1980); see Figure 5.3.

In this model we follow the displacement T(t) and rotation *,(t)

of the ith mass N. The bending springs (I ) tend to keep the system

straight by keeping the masses parallel and the shearing (k!) tend to

keep the masses perpendicular to the connecting links. We assume

small displacements and rotations so the approximations
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Figrure 5.3 A lunped parameter model of the sinplified truss system.

sin (t)

1/

(60)
tan (hl C t) P. Z n W)/

are valid.

In this case the (approximate) equations of motion of the ith

mass are

~L ~ 5 ~ i+l MM k'

S "

(The spring constants depend on a since they represent the restorative

forces of flexed bars, bend by different amounts.)

94 . , ..-
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" M -t + (t)
(61b) t) - I { YO ]-

where we have normalized a 1 and defined

(62) Sn- i

and similarly for (We shall omit trwa :er:, of the boundary

conditions at the ends of the system.)

To proceed, we shall introduce the nondimensional variable C = t/L

and rewrite the system (61) as

M) fVcn (t) - o*i (t) +V1+ {V mV""
r 8 .

(63) T i(t) = - -{K Vn.t)- A i t ) )
1 M M1

where K.'.'i-

- k L, X k

-. . (64)
+ 1-. :::.:. _V Ci = (ni+1 - ni ) , V ni (ni_ i-l) -:"'

Next we associate a position in the system xiC-1/2, 1/2]

. (normalizing L 1 1) with each mass; and we introduce the -notation

(65) l(t,x.) = n( t), *(t,x.) = Mt)

Having normalized L 1 , we have e-I and xi -x. - x. + e.

Let - }x be the set of all points in the system. In this notation
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(66) (t, x) - (r[(t,x+) - r(t,x)]
" ~( 6 6 ) : ' L -

1 C"'.'- "A

- . (V r') (t,X) - [(t,x) - f(t,x-C)] , xC Z

* '. 2and the system is

"e(tx F.. (x.){V£+-C(tx) - (tx i .

.(67) +V+]

Ti (tx) - VV£K S(x.)[V C+TiC(t,x) (t,x)IW

The scaling of (67) may be interpreted in the following way:

Formally, at least, the right sides of both terms in (67) are 0(C2).

" -This implies that the time variations are taking place in the "fast

time scale" T - t/C. Also, the spatial variations are taking place in

the microscopic scale" x which varies in C-increments (e.g., xi+1 - xi

+ C ). Introducing the macroscopic scale z - Cx, and the slow time

scale a -CT , we may rescale (67) and observe its dynamical evolution

on the large space-time scale on which macroscopic events (e.g.,

"distributed phenomena") take pl.ace.

Rewritten in this spatial scale, the system becomes

7. C Y2,lZ ) i Z.U-

dt 2  C S C-'

(68a) Zi"" - (C - }+""

2C Ci z.

..
d T'-(t 

+ c- 
C-L(68b) C _ 1k z 6~c(~' cc(~2 2 CC {C( 6 ~ Ct- C t-]dt
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where

C + C+
(69) 6 = V -o(1) in e

The essential mathematical problem is to analyze the solutions

IP, flof (68) in the limit as e+0.

' B. Mathematical analysis

To proceed, we shall generalize the problem (68) slightly by

allowing K and K to depend on z.as well as z/. This permits the
s b

restoring forces in the model system to depend on the large scale

shape of the structure as well as on local deformations. We use the

method of multiple scales; that is, we look for solutions of (10) in

the form

.. :: fl:(t) = T(t,z,y) YZ/L

and we have

*(7) K=K (Z,y), Kb K(z Y)u y z• (71) Ks s ".j

On smooth functions P(zi ) the operators satisfy

(6 1p) (Z,y) - 1P (Z+E;y+1) -* (Z,Y)

=.4. (z,y+l) - P (z,y) + 4' (z+e, y+l) - 4' (z,y+l)
.(72a) 1(Y) +C (zy+l) + (z,y+l) + 0 ( 3)

az2 2

2 --. 9-

,...o o;.* * **-. . -..-... . . .'.o ... '. . ... ,..-....,. ,,.........,.. . .' '.., - .- - - - - -



r° (6 E- ' ) (z,y) - 4 (z,y) - 4 (z-C,y-l) .

N(72b) - 4 zY) - (z,y-l) + (Z,y-l) -AP (Z-,y-"

. ... = - ) ( ,y ) - (z , y - l ) + 2 (Z , y -1 ) + 0 (E.

We assume that , Ti may be represented as

4' (t,z,y) - ' 0 (t,z) + 1 (t,z,y)+...

(73)
n (t,z,y) - no (t,z) + E nI (t,z,y) +...

and substituting (73) in (68) and using (71) (72), we arrive at a

sequence of equations for (V nl )', ('l, '  by equating the

coefficients of like powers of e.
r

-~-1 0
Starting with £-, - 0 '.we have

-(74) r K(z,y) S 0 (t,z)] = 0

which is trivially true from (72b) (73). The same term for (68b) is

trivially satisfied by the assumption (73). Continuing

.1[  r K (z,y) S lI (t,z,y)1 + K (Z,y) {Sn (t,z) -'0 (t,z) }]=0
*(75) b (S 0 r

S-which may be solved by using the corrector X (z,y) and taking

T (76) 'l (t,z,y)= x (Zy) o (t,:Z)

with

(77) (z,y) SX (z,y)J K (z,y)

If we regard s as a parameter in (77), then there exists a solution
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XO unique up to an additive constant, if K(,), K(z,-) are

periodic in y, if there exist constants A,B so that

(78) 0 <A < Kb(z y)<B<

and if the average of X (z,.) is zero

(7 1 .2 K (,y) dy-O
L() -L/2 S

which holds if the system is pinned at the ends as indicated in Figure

5.3. Let us assume that (78) (79) hold, and

(80) 0 < A < K (z,gy) < B <

(which we shall need shortly).

Considering (68b), the 0(e-1) term in the asymptotic expansion is

(81) [s{K (z,Y) (S n (t,z,y) (t,z))}] -0

Again we introduce the corrector X(s,y), and take in the form

(82) n- (tz,y)- (z,y)0 0t,z)

which gives the equation for the corrector

(83) S { (z,y) IS+X, (zy) -1 -0

or

+(84) s{ '(z,y) s X-(z {.,y)} K (Z,y) -Ks (z,Y-l)

By hypothesis the right side in (84) is periodic in y and has zero
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average (79). Hence, (84) has a periodic solution, unique to an

additive constant.

Continuing, the 0(cO) term in (68a) is

S + {r ]Kb (z'y) S '2 (tr,,y),

+Ks (z,y) ts n (t,z,y) *1 (t,z,y) I
0

+K (z,y) (t, Z)

... +S+ {r Kb (z'y) , -1P (tz'y)})'

(85) +s+ {r Kb (zY) (t,z)}
2 V'oaz

az
:. : +-(rir ,(zy+1)}-'o(,z)3Z a: 2

0 0
a!2  r t(z'y+l)} (t at
2 a

2
. -. This should be regarded as an equation for 1P as a function of y with

(t,z) as parameters. In this sense the solvability condition is as

:- before, the average of the sum of all terms on the left in (85),

except the first, should be zero. We must choose 4) so that this in

fact occurs; and that defines the limiting system.

Using the correctors (76) (82), we must have

s( S+ --
Average { (z,y)+- b (s,y) (z,y)i-1. .-. y) i~ 2  i~ 2 ,.-?

-. Bs+at2  a 2  S -

(8E) 0o (r Kb (zy+l))] a 0  K (z ,Y)

"(z y)y LS

+ K & n (z,y) - x (z,y)ll - o ""0

: ~Defining the functions EI(z), G(z) by the associated averages in (86),
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* the averaged equation is

(87) - - z . -)+ az HOJ0

which is the angular component of the Timoshenko beam system (Crandall

et al. 1980 p. 348).

Arguing in a similar fashion, we can derive the equation for the

displacement n (t,z) in the Timoshenko beam system -
0(

2 3(a.)..2 i 1  3n %,"

2(88) !2no L (z) ( -0 (t,z))

C. Summary

We have shown that a simplified model of the dynamics of the E
truss with rigid cross sectional area may be well approximated by the

Timoshenko beam model in the limit as the number of cells (%L/L)

becomes large. The continuum beam model emerges naturally in the

analysis, as a consequence of the periodicity and the scaling. ',

r° .

To compute the approximate continuum model, one must solve (77)

and (84) (numerically) for the correctors and then compute the

parameters in (87) (88) by numerically averaging the quantities in

(86) (and its analog for (68b)) which involve the correctors and the

data of the problem.

'°- .** 44
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. '6. Homogenization and Optimal Stochastic Control

In this section and the next ws show that the process of deriving

effective "continuum" approximations to complex systems may be

developed in the context of optimal control and state estimation -*

- ; designs for those systems. This procedure is more effective than the

procedure of first deriving homogeneous/continuum approximations for

. the structure, designing a control or signal processing algorithm for

* the idealized model, and then adapting the algorithm to the physical

- model. In fact, separation of optimization and asymptotic analysis

can lead to incorrect algorithms or approximations, particularly in

control problems where nonlinear analysis (e.g., of the Bellman

dynamic programming equation) is required. The problems treated here

" "and in the following section are abstract systems which illustrate the

basic techniques. At the beginning of section 7 we shall present a

simple argument which shows how the class of models treated here might

arise. In subsequent work we shall apply the combined homogenization

- optimization procedure described here to the problem of controlling

S"-. the dynamics of lattice structures like the truss structure analyzed

" -in the previous section.

6.1 A Prototype Problem

The interaction of homogenization and stochastic control was

discussed briefly in the book (Bensoussan, Lions and Paponicolaou

1978), and in (Bensoussan 1979) and (Blankenship 1979). The recent

paper (Bensoussan, Boccardo and Murat 1984)* provides the first

systematic analysis of an abstract control problem involving

L homogenization. We shall briefly summarize its main results against
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.. ..- the background of the lattice system discussed in section 5.

The problem is to control x (t) given by

dx g X , X ,v) +-bx (% x), dt + G~ ,- 1 dwFt

x(0) mX, 0<t

with x e( t) defined in a bounded domain 0 C R with smooth boundary.

K:Here g, b, and a are smooth functions of their arguments, w(t) is a

standard Rn - valued Wiener process, v is the control and c> 0 is a

parameter. We assume that g, b, and a are periodic in their second

* argument with period one on the unit torus ' in R

e
- -Let T be the first exit time ofi C t) from the domain 0. The

cost function is

(v(1) - Ed ( f ~~d L(,e, 1 x ,v) exp -fc(1,- vd)dt

and we define

Cu (x) -inf J (v(*))

V (1

We assume that the cost rate L~x,yv) is periodic in y on the torus,

and has linear growth in v. The discount factor c(x,y,v) is uniformly

bounded, positive, and periodic in y. The set of admissible controls

U adconsists of feedback funct-ions v(-)

£ 1C

[ We are grateful to Professor A. Bensoussan for transmitting a
preprint of this paper to us.
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(Ve shall justify this presumed structure for the control law in more

detail later.) The system has highly oscillatory coefficients; and,

as in section 5, one would expect the solutions of the control problem

to be well, approximated by the corresponding control problem with

4 ;. g(x,y,v), b(x,y), o(xy), L(xy,v), and c(x,y,v) replaced by their

averages (appropriately defined) over y. This is not precisely the

case and one must carry through a complete asymptotic analysis to

determine the exact nature of the limit and the approximation. -

In (Bensoussan, Boccardo, and Murat 1984) this analysis was

carried out in terms of the Hamilton-Jacobi-Bellman (HJB) equation for

the optimal cost,*

AU = H (X, 1 X, U£, DUE), U£Ir 0

2x,. .(6) A -a. (XE ) .xa bi ( -)'
-"61 A -aij e, axi axj J e '-C.-X

where a i iOT aij 2 1)

(7) H( x,y,q,p) = inf {L (x,y,v) + p-g (x,'y,v) - q c (x,y,v)}

Notice that the Hamiltonian H is periodic in y. The objective of the

analysis is to determine the limit

u(x) = lin U (x)

(8) C - 0

* _ LHere and in the following we use the summation convention that
repeated indices ij are summed over their full range.
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• • ..

to identify u(x) as the solution to a HJB equation, and through this

to associate a "limiting stochastic optimal control problem" with the

original problem. The method is "homogenization" of the nonlinear

'.' partial differential equation (5). To accomplish this, it is

p necessary to impose further regularity and growth conditions on the

coefficients in ()-(7).

Assume U is a nonempty subset of a compact metric space U; and
ad

(9) L(x,y,v) R x x U -R
ad

is continuous, periodic in y, and

(10) mo1vl 2  m, < L (x,y,v) < k (+1v1 2 ) m0>0, ml > 0

Also,

g(x,y,v): Rnx R x Ud -R

aO(Xy,v): Rnx an x Uad +Rnx n

are periodic in y, continuous in their other arguments, and satisfy

Igl < gI i 1+Ivl) ::-:-
(12)

0< c< c< c

Under these assumptions standard selection theorems guarantee the

existence of a control law v(x,y,q,p) achieving the infimum in (7) and

for any q,p fixed
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.. (,v) (vy,q,p) _ . ( C 1+ IPI +

I H(xy,q,p)l < c( 1+ 1PI 2 + lqi)

Moreover,

H(14) H(x,y,q,o) < c (1+ IvI 2) -  q >o .

H(Xy,q,O) >-C + qc-qS, q < o

I. for some non-negative constants c, cI  and some arbitrary e £ Uad

Also,

-.4
H(x,y,q,p)- H(x,y,s,t) < (P-0) q (x,y,V-(xyvq,P)) '".-

-" 4~15) - (q-s) c (x,y,V^(x,y,q,p)) " "":. ,

< ci P-t I ("+,i'+ )+cl*-sl

and a similar condition holds with the roles of (q,p) and (s,t) ""

reversed. These grovth conditions suffice for the asymptotic analysis

of (5).

6.2 Invariant Measures and Correctors

Consider the second order operator

2

(16) A = A X- -aij (X,y) -a - b. (x,y) -

and its formal adjoint

a a a) aY7
(17) A - (a (x,y)i) i- i [ ba- y a IT ij

ij a y Y Y-.106i.:'. 106 ""



-a Y . -- - . a ,- .
V -I-

For any x fixed let m(xy) be the solution of

A m-0, m(x,y) periodic in y
(18)

m > 0, m(x,ydy -1
Y

with n regular (in WV', 2 < p <) Since x is restricted to a

compact subset, we may assume

(19) 0 < m < m(x,y,) < m,

for some constants m and m. Thus, m(x,y) defines a probability

" measure on Y for each x, which we call the invariant measure

associated with A.

A key assumption in the method is that the drift term b(x,y) in

(I).is "centered" in the sense

(20) f m(x,y) b (x,y) dy -0

If this assumption fails, then the asymptotic analysis takes a very

different form from what follows, and the results (i.e., the limits)

have a totally differ.ent character.

The centering hypothesis and the regularity assumptions mean that

the "correctors" defined by

A X (x,y) - -b (x,y) , i-,2,..., n

* *- (21) -

Y x (,y) periodic, f~ X (,y) dy -0

2

exist and are smooth (i.e., they are C functions). These functions
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play a key role in the homogenization procedure (Densoussan, Lions and

Papanicolaou 1978) in defining the limiting system. Solution of the

system (21) is the key numerical problem in applying the

homogenization technique.

6.3 Identification and Interpretation of the Limit Problem

Using the invariant measure and the correctors, we define

S(x)- m(x,y) [aij (x,y)- a -ax"; ""Y a Yk

(22) ayk
- -2 4 (b. x +b.X " )dy

lk

r. x) =- y m(x,y) [ a (x,y) -aik ]dy

":~~ su au :i:]
(23) U -r. (x)i j aX ax.

(24) H (x,q,p) 4 m(x,y) H(x,ygq (I-DX)p) dy,

(DX) =O. .xp Pk.

Using the definition (21) of the correctors, we can rewrite

Q (z) as

Q (x) Im(X,) (a _x a ( a
[ (25) Qij xy ij j a +ark a dyY Y k k Yr Yk .-

1.
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which is uniformly positive definite. This with the other assumptions

means that

(26). A u= H (x,uDu) u u o 2• - (26) -r -. 0.
has a unique solution in W pe [2, .

Equation (26) defines the "limiting control problem" associated

with (1) - (4).

THEOREM (Bensoussan, Boccardo and Murat 1984) Under the assumptions of

regularity and nondegeneracy of a.. (x,y)

(27) ue u weakly in W' 0 -

for some p 0 > 2.

- The function H in (24) may be rewritten as

H (x,q,p) = inf { I mix,y) [L (x,y,v(y))
°

+ P. (gi (x,y,v(y)) (xy,v(y))
"i 1 k

(28) -q c(XuY,v(,))] dy.

A inf { L (x,v(')) + p • g (x,v ('))

-q c (x,v ()}

•. ,--.- |

o..
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where v(.) is any Borel function on Y with values in Uad. From the

final expression it is clear that H is the Hamiltonian of a control

problem.

Using (22) (23) and (28), we can identify this problem explicitly

as

(29a) u(x) inf J (v (-)
V(.)

(v(-)) Ev. fT (x(t), v(t))

X v(
(29b)

.exp (-0 c (x,(s), v(s)) ds) dt]

dx= [g (X (t), v(t) +r (x (t))]dt

(29c + '2Q (x (t)) dw (t)

x(O)-x, 0 < t

with T- the first exit time of the (controlled) process x(t) from the
x

compact domain 0.

A key property of the limiting control problem is that the

admissible control laws depend on y, the "rapidly varying state

variable", as may be seen from (28). Thus, the "fine structure" of

the original problem (1) - (4), that is, the periodic dependence of

S.-controls on y t) - x (t)/£ ., is retained in the limiting problem. In

effect, the limiting optimal control law depends on the fine structure

- property which may not be desireable in some engineering

implementations.

LI
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Notice that the limiting state dynamics (29c) emerge naturally

fron the asymptotic analysis (see Bensoussan, Boccardo and Murat

1984 for details) of the nonlinear HJB system (5) - (7). Note

further that simply averaging the functions g, b, a , L, c with

respect to y, and then posing an optimal control problem in terms of
Ire

the averaged (y independent) functions leads to wrong answers for two

*reasons. First, the appropriate averaging process involves the

invariant measure and the correctors, and the role of the latter is

not obvious in a naive application of averaging methods. Second, as

(29) shows, the optimal control law that emerges in the limiting

I' process depends on y, which cannot be the case when the averaging

process is separated from the optimization process.

The key numerical problems in applying the homogenization-

S optimization procedure to a specific problem, e.g., control of the

lattice structure described in section 5, are

1. solviz4 for the invariant measure (18),

2. verifying the centering hypothesis (20), solving for the

correctors (21),

3.computing the averaged quantities (22) -(24), and

-4. solving the limiting control problem (26) -(29).

Sequential solutions of these problems constitute algorithms for

simultaneous homogenization and control.

V7T
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6.4 Application: Homogenization - optimization

of lattice structures

To illustrate the techniques of the last sections, we shall

reconsider the model for the lattice structure analyzed in subsection .

5.3.2 with control actuators added. The truss shown in Figure 5.3 is

again constrained to move in the plane and torsional motion is

excluded to simplify the model and confine attention to the basic

- ideas. Now, however, we include a finite number of actuators acting

to cause transverse motions. The truss with actuator forces indicated

by arrows is shown in Figure 6.1. The corresponding discrete element

model is shown in Figure 6.2.

-"Suppose that the physical actuators act along the local normal to

the truss midline as shown in the figures, and that the forces are

small so that linear approximations to transcendental functions (e.j.,

sin VI qi, etc.) are valid. Then the controlled equations of motion

of the discrete element system are (recall equation (5.63))

C C+ i C- C
(30 £ t( t ) )V I t V *. (t)]

i r s

-'(30) C _V-  i C V-n Ct "

T 1 (t) { nV-Ti (t) t)} + E 6 i ij) U t)

where the notation in (5.64) has been used,

i112

.l 
..e



Figure 6.1 Truss with transverse actuator forces.

41,

Figure 6.2 Discrete element model of the controlled truss.
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r -

6 (i,j)(3I i=:i

and ij, J-l,...,m are the locations of the actuators. Hence, if

6(i,i.) - 0 for all j-1,...,m there is no actuator located at the ith

point which correponds to the physical point x. e [O,L]. The number m

of actuators is given at the outset and does not, of course, vary with

the scaling.

The control problem is to select the actuator forces as functions

of the displacements and velocities of components of the structure to

damp out motions of the structure. Measurements would typically be

available from a finite number of sensors located along the structure.

We shall not elaborate on this component of the model, and shall

instead assume that the entire state can be measured. To achieve the

hstabilization, we shall associate a cost functional with the system

(30). Let

(32) u(t) = (u.(t), ..., u (t)]

be the vector of control forces, and

O N 2 2 (t 12-

jy [ u (0 j 1 aI (t)] + b. [ (t)] + I (t)]

(33)2
£ 2 m2+8. [ i :i. t)] + 6 i,i.) u. (t)} eYt dt1 1 3~

where (a:,b ) and (a 8) are non-negative weights. Formally, the -

control problem is to select 6(ii)u (t), i-1,...,N, J-1,...,m to

achieve

(34) inf Ey u (.)]
uC)
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subject to (30) (31) and the appropriate boundary conditions. The

case Y+ 0 corresponds to stabilization by feedback.

The analysis of this control problem is based on the scaling used

in section 5, equations (5.63) - (5.69). Let t- t/E be the fast ____

time scale, then t

C ' '£'i- 2 +b C%_r 2
*" I u ( -) 1 0 e Z {a. P I I b i (I T )l

(35 -0 i=l

+iC2 (T) 2 + 2 C 2 "J 2
1 M (t) + Z 6(1,1.) Iu. (T) I eC dT

with "E) etc.

Let (IP, IP, T ,I ) be the state vector of the system (30) with

*" " ii " [)1J2""" ' J] and similarly for the other terms. Let

V - V Y(' 4', nT ) be the optimal value function for the problem

(30) (35). Then the Bellman problem associated with (30) (35) is

N .,.

E £ + 1 VT1 rE.'- Pi

* (3 6 ) +  -2 7 i (V[ l -F + -V ' b]1 
-

i=1 r

+ E -V - t 1(1 (V TI. - l V, +

N M 2
miri teZ E (i~i) uj VI 6 U 1 ~ ~

u j 
.., 

j=
a d

N 2 a2 ' +b £2 2 + 2. _C )-cy V -0
+ i bl

. ... /j. * : % % %.y * *% * * . ..:.....



• - . ,

RMARKS:

1. Note that the minimization in (36) is well defined if the admissible
.-

range of the control forces is convex since the performance measure has

been assumed to be quadratic in the control variables 6(i,i )u

2. Since we have not included the effects of noise in the model, the state

equations are deterministic and the Bellman equation (36) is a first

order system. To "regularize" the analysis, at least along the lines

- .followed in conventional homogenization analysis, it is useful to

include the effects of noise in the model and exploit the resulting

coercivity properites in the asymptotic analysis.

3. If we introduce the macroscopic spatial scale z e x, the mesh xi ,f

* and the variables

(37) , (tzQ - i (t), q (tz i ) - e (t), etc.

then the sums c Z may be regarded as Riemann approximations to

i
" -integrals over the macroscopic spatial scale z. The asymptotic

" analysis of (36) with this interpretation defines the mathematical

problem constituting simultaneous homogenization - optimization for

this case.

We shall return to this challenging problem in subsequent work.

• S. •

116

77



-.- % -. -

7. Homogenization and State Estimation in

Heterogeneous Structures

7.1 Problem Statement and Background

• ..*,

signal processing problems arise in the control of large space

structures in several ways. Our special interest here is in the

treatment of a nonlinear filtering problem for a prototype abstract

jysteu with a homogeneous infrastructure. We shall give j% detailed

S". treatment of the filtering problem fqr the system

. dx M(t) - [ dt+ G[ x(t)dw(t)
C C

tC
"() dz (t) h[x-(t) ]xc(t)dt + dv(t)

S(O) ,z (0) 0, 0 < t < T ,> 0

U nwhere E is an R- valued random variable, g, a, and h are periodic on

' - the (unit) torus in R , and w(t) and v(t) are independent, standard

vector-valued Wiener processes which are independent of E . The

filtering problem for (1) is to estimate xC(t), i.e., compute its

Cconditional density, given Z G {zC(s), 0 < s < tj, the a-algebra of
t

observations. We are interested in the behavior of this filtering

problem in the limit as C 1 0.

In the model (1) the vector x t) may be regarded as the

composite state of the overall system formed from the lexicographical
----------------------------------------

The results in this section are joint work with A. Bensoussan
at INRIA in Versailles. This research was also supported in part by
the Department of Energy.
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listing of the states of each of the components of the system. The

periodicity of g, a , and h represents a regularity property of the

array; the small parameter e represents a natural, non-dimensional

"distance" or "coupling" variable characterizing component

interactions. In a subsequint paragraph we shall describe a prototype

tL system in this class.

One would expect the system (1) to be well approximated as 0 + 0

" by a similar system with g(x/e), a(x/e), and h(x/C) replaced by their

*i~i .:averages g, t, and h over the torus. This is the case, although the

precise nature of the average is difficult to guess from a cursory

" inspection of (1). The filtering problem for the associated limiting

system is just the Kalman-Bucy filtering problem which has a simple,

closed form solution. By constructing an asymptotic expansion for the

b conditional density of x t) given , we can obtain a family of

finite dimensional linear filters which (presumably) provide

increasingly accurate, e.g., O(C), Oe),...,etc., approximations of

the conditional density of x (t). The technique used to derive the

-*result is "homogenization" of a linear stochastic partial differential

e. .equation for the (unnormalized) conditional density of x t) given Z

While the system (1) is obviously only an example of a larger

-* class of problems, we shall see that its analysis has all the

essential difficulties of more general problems. Before starting the

analysis it is useful to illustrate how a problem like (1) might

-' arise.

° .118
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Consider the prototype System:

g dx (t) -afx (t), u(t)]dt + N bo t d ()iN
Si N ij~~t]w~ti ,,.~N

a and b are smooth functions of their (vector-valued) arguments,

I L and wk r standard (vector) Wiener processes which are

jendent for (ij) $ (k,2t) and u~t) is a vector of control

*bles. The functions a and b are the same for all the subsystems
T

the overall system with state x(t) [xrr(t),...,xn(t)] has a

eneous structure. The coupling is random and normalized by 1/N

flect the assumption that each subsystem has 0(l) coupling to the

nder of the system (as opposed to 0(N), 0(1/N), etc.), no matter

arge the latter is.

* Associated with (2), we define

N.
*SMt Z x x(t) "the aggregate output"

c 0(t) r x ~()="the average output"

as that in the process of controlling the system, we observe not

but the aggregate S(t) through the measurement

dz(t) h[S(t)]dt + dv(t)

h smooth and v(t) a standard Wiener process. Suppose further

the control u(t) is defined by u(t) - f[S(t)] with S(t) an

mate of SWt derived from t(a), s < t. We would like to analyze

L (4) in the limit as N-' and, more precisely, to show that this
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analysis involves the asymptotic analysis of systems scaled like (1).

Defining Sx. (t) - xi(t) - G(t), we have iE 6 r.(t) 0 0. The

aggregate output S(t) satisfies

dS (t) = (x (t) , u (t))dt.
i1

N Nu (5) + b (Kb (t)) £ dw. (t) .-
N i-i J 1

=Na (r(t) u (t))dt

1 N

i,j=I
N N-"+b (0 Mt) E 6xi (t) E. t) .....- x wij" ".

x1.1 - I 1
+0 (1. 6 2() )dwi ' (-t)
lxi

where w(t) is a vector Wiener process defined from the components of

wig(t). Neglecting terms, we haveII

N
do (t). = a(a(t), u(t))dt + b(a( Z d"ij (t)

* N i,j-1
(6)NN

1 N 1 N .-'.
I C + b(o(t)) Z 6xipt). - dwi.(t) [

" To treat the last term, we use the formal argument in (Geman 1982)

which goes as follows: As N-1 a "local chaos" condition prevails in

which each subsystem with state 6xi(t) behaves "independently" of

N
- every other subsystem, and, in effect, of the noises (/

i-l,...,N. That is, a law of large numbers applies to the last term

as N -0 Since

£ 6x (t) -0

120
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by the definition of a(t), the last term in (6) is zero. (In a more

general situation, this term would approach zero as N-i -. ) Notice that

N. ._. w.N . .t.

2 wij

in the second term behaves like a standard' Wiener process for each N.

I Thus, for large N we obtain the approximate model

do(t) " a(c(t),u(t))dt + b(a(t))dw(t)

Now let a(a,S) = a(a,S) and assume that S and S have the same

order behavior in N for N large. Defining e:= 1/N, we have two

descriptions of the aggregate behavior of (2) for N large

L

da(t) ; (o(t), -o(t))dt + b(o(t))de(t)

(8a) -

dz(t) h( -a (t))dt + dv(t)

dS(t) - - &(cS(t),S(t))dt + - b(cS(t))d(t)Cab)
I ,.-.8b)

dz(t) - h(S(t))dt + dv(t)

So to analyze the aggregate behavior of the original system (2) as

N-)o, we can study (8a) or (8b) as e'* 0. If a, b, and h have a

periodic or randomly recurrent dependence on their arguments, then the

' analysis of (8a,b) involves a homogenization problem.
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" The literature in mathematical physics and engineering contains

many examples of systems scaled like (8) which can be effectively

treated using homogenization theory (Keller 1977) (Larsen 1975, 1976).

Homogenization methods have not been developed in control theory,

other than the brief treatments in (Blankenship 1979) (Bensoussan .7

1979).

7.2 Preliminary Analysis

Let (9,F,P) be a probability space on which are defined two

independent Wiener processes w(t) and s(t) with values in Rn and Rd,

respectively. Let be a Gaussian random variable with values in Rn -

* which has mean xO and covariance P0. Suppose -is independent of w(t)

* and z(t). Let Ft , t > 0, be a family of a-algebras with F = F, such

that w(t) and z(t) are adapted to 9: and E-is F - measureable. Let

Z ac Iz(s), s<tI. Let Y be the unit torus in Rn and

(9) a(y) e L (Rn; Rn) ; invertible

h(y) c L (R; Rd )
LZ

which are defined on the torus Y, and which are sufficiently smooth

there.

Let x (t) be the solution of the Ito equation
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dxC (t) [ xC(t) ]dW(t)
(10) .

x(0) 0 ;,o< t <_T i ::

and note that x (t) is independent of z(t). Consider the processes

w (t) _t o g( e-)x ds +(t)

0 C-- (11) :i: C::

v£(t) - - f h(2L-)x ds + z(t)
0

and

C -
P M(t) exp{ ft h(-)x£ dz + f a g (-)x - dw0- 0 . 0 C

(12)
x 2 )- x C2

- ft lh ()xl. ds - t (- ) I2 ds
0 0 £U0

For any finite T, one has

C
" (13) E - (T) <

which is a consequence of the following condition (see A. Bensoussan,

J. L. Lions 1978)

(14) E exp Slxe(t)I < c, V t Cto,T]

1 *

To check (14), consider the backward Cauchy problem (a 2 " 00

and we shall use the summation convention from here on)
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22

u(xt) -exp, (6jx

Then

(16) E exp (61x~ (t)l 2)-E u(FO).

Consider the function

(1) (x,s) =exp[P(s)lxi2 + P(j) ],P(s) > 0-

P(t) = 6 ,p(t) -0

We have

r2
+ a.. ax.~. = i+ .2t a j+4ax1 2 P2]

~~(p2t a PP4lal4

(19) p+ 4llallP2  0, p+ 2n 11llaP 0

we.~ hav
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F'E exp 61xr(t)l < E ex 6C2/141 ai11 6 tL
(1 -4 11 a 1 ~/

(21)exp6((l-411 all 6t)I - 2P% ]1Xl2

1I(1-4 11 all6t) - 26P0 1

Therefore, sufficient conditions for (14) to hold are

1 - 4 all1 6T > 0
(22)

(1 -4 11al 6T) I > 26P.

which hold if 63 is sufficiently small. These conditions are

independent of c.

Because of (15) we can consider the change of probability given

by the Girsanov transformation

* (23) dPC iFa(

Under the probability PC the processes wC(t) and vc(t) are independent

standard Wiener processes. Since w (t) and v (t) are independent of17
0CF under P , is independent of v (t) and v (t). Further, since

* '(), Fl is a martingale, E has the same distribution under P as

under P.

7.3. The Filtering Problem

In the space (i1 ,F,P ,Ft) we can write
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dx£ g@() x Cdt + (

X (0)= -
* * (24)

C

-dz h() x dt + dv (t)

£ C

where w and v are standard F -Wiener processes which are mutually
'. .0

* -- independent. Moreover, & is a - Gaussian random variable with mean

x0 and covariance matrix P0. The filtering problem associated with t

(24) consists in computing

* (25) rc(t)(,) = Ec[,(x C(t)) I zt]

for ' any Borel bounded test function on R It is easy to check that

1r (t)(,) E[4)(x (t))ue(t) Zt.j

E[,c(t)I Zt
.

(26)
=

• , ~p~ (t) (l) i:i:

where

(27) P£(t)(,) - Eb[(x£(t))ue(t)j Z-"

Our purpose here is to study the behavior of this quantity as £ 0.

In subsequent arguments it is useful to have the bound

S- (28) . E U (T) 2 < C.

To ensure this, we proceed as follows: For s > 1 we write

u (T.) exp{2 fT(hx dz + (a-lg)x dw -'

(29).--"
-:2s f0 T (h+a-lg)xe 12 d t}  exp { (2s-1) f0 T (h+a-'glxaI'dt),

-0 00h£gx d
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From this ye have

(30) E Uc(T)2 < (E exp s(2s-1) fT (h+a-lg)xC2 d12 ) s
_s(s-dtT --

S- 0P°

Note that s(2s-l)/(s-l) has a minimum on [1,-) at some so > 1. Thus,

I L it suffices to check that

.- (1) E exp0 s0 h x"-1) -1

This is similar to (14) except that the parameter 6 is fixed. Taking

(32) 6 so T s°2°i

we require (22) which reads

2. s0(S-l h4,a-lg 2

1 > 4 aIl T2
- : '- (33) ,-..

(1- 60)1 > 26P 0

These conditions restrict the size of T, and the extent to which they

are necessary is not clear.

7.4. A Duality Form and an Expression for the Conditional Density

By introducing a certain duality formula it is possible to obtain _

an expression for the conditional density which is convenient for the

homogenization and convergence analysis.
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: Let 8 be a deterministic function in L (O,T;R and

S(34) (t) exp {.f 8 dz - f0 IBI2ds}

It is known that VT, the set of random variables, IP(T)), obtained by

varying in LW(O,T;Rd) is dense in L (lZp;Rd).

nLet Y be a smooth, bounded function on R and let 8 (t) be a

. " d
smooth, bounded deterministic function on [O,T] with values in R . We

introduce the deterministic function ve(x,t) which is the solution of

"- 2v€ + C-

+ a X

~3)+ V~ h (!,xB1 C-t) 0

."v ( x,T) =  (X) T > t > 0 "'

Because the doefficients are smooth, (35) has a solution in

C2'1(I x [0,T]). Moreover, it satisfies the growth conditions

(6) Iv: (x,t) < C 6 exp 61x12

SI -Dv (X,t)t < , xp 26 x.2

where 6> O.can be chosen arbitrarily small. Note that the first

constant C 6 in (36) can be chosen independent of C, but not 6.
%

One way to verify (36) is to use a probabilistic formula for

v (x,t). Consider the equation
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XdEC - g-xdt + (x-)db£ C

(37)

x (t) x

on a probability space (not necessarily the original one) where b(s) . ..

is a standard Wiener process. Then

. (38) v£(xt) - E {t(x (T)) exp f1 h -)x Sds}.

Therefore,

CT "

* :. Iv (x,t)l < K f E exp Clx (s)l ds .

(39)

- K f T E exp 61X (s)I 2 ds
6 tIL

* where 6> 0 may be chosen arbitrarily small. A calculation similar to

(18) shows that

(40 E:; exp 6 lxc(t)1 2 < t ep p(O)lx .-..

Iwhere
t~t

P M 6. t > ::-

6

• .'" '" it + 4(Pt) 2  11ail + 2 I'{gll Pt 0 , ..'"""

-k t

, . . + 2 P n f l a l l " 0 k t ( t ) = ' .

Now
6Pt (S)= ".

expf-2 lIgl (t-s) - 4 11a116(t-s)] (1-exp[-2 tIgh (t-s)])
2 II gII (t-s)

* ' .4.4
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(42) 2jllgl(t-s) exp(- 2 IIkl (t-s)] > 2 liill T exp [-2 IIII TI

1-exp[- 2 lIg~l (t-s)) 1-exp[2 IIUgI TI

Since the function xexp(-x)/[l-exp(-X)] is decreasing on [Om], one

has

.(l-exp[-2 Illl (t-s)]) [.?.l[(t-slexp[2 1lMB (t-s)] -4 1if.1 (t-)].
1-exp[-2 lIgIl (1-s)] -

If we choose 6 > 0 so that

r

(44) 4 Ill T 211g11 exp[-2 11i T1 ,6T
--exp[-2 Ilil T).

then

(45) IPt(s)l < 26 IgIT
- 2 IlgiI T exp(- 2 IIhlg T]-4 lIail 6T(l-exp[-2 lIgl TI)

And from this the first estimate in (36) follows.

To prove the second estimate in (36), one may proceed by

-2differentiating the expression (38). Namely,

1.30
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T C
.!....{;-." " ([" h ) OCds-

ax dx ,

(46) C +  
.

Ct'. T -x

+ *(X (T)) (exP( f~ h( )X Ods])

T a h ik c h X ( )e

and from (37), . .
" "

C R ax C ax Ct1 Kj -.- ) ds,- , x j x i""'

(470d + x i db+"X "C' ax__, x k x

1 ki >0

It follows from (47) that .

(49) (I -(s < Ctl + lxi).: :

UsiHnce the fucinv( •) ti osbet banacnein

It frostion Unraion (9uwe fhe ony tate eq uality

Usn 4 12

(48) "".." expesson or t ) ax -"-. < "E 1

*.o * . ... °. :

i :-andProm tion e can reiyde duc asuptos he saeo estimate alt '.36)-

Usn th".-to.vT.'.i s osil o ban ovein
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(50) E~pE (T)(*)p(T)1 - EvcYC(EO)]

where f vc(,O0)7F0 (x) dx

15 rep -t(- Ti- (-
(51) lto~) - (2w) det%1 - xxP 0 (- 0 ]

Proof. From (27) we have

(5) E[pC (T)(*~)B(T)1 E(4,(xC(T))uc(T)B(T)1

-E(v c (x c (T),Th c (T)Bcr)]1'

But

c £ av ~ a2V
dv (x Mtt . 0-+ ajj tx

(53) at a i )

+ a dw
S.ax ij j

and

d(ljcp)= pu fh( x£ *cdz + a g(- xc dwl

* .. (54)

+ pV6i-dz + piiB-h( 3 -)xcdt

Using this and (35), we have

d~v (x (t),t)u ct)p(t)] - I£tp)K (-)Dv x()tc

E1 x£ M c(5)+ V~ (xC())a g( - )x (t)) dw

+ V£c(x c (t),t) (h( ~)x£ (t) + S(t)hdzl.
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Because of the estimates (36) one can take the expectation of the

stochastic integrals obtained by integrating (55). Integrating and

I U taking the expectation gives

E v (C, 0) - E[vc(xC(T),T) uc()p(T)]

which is the desired result.

QED.

Remark. Note that (50) is well defined if T is Borel bounded and

8 L(O,T;Rd). In this case the function v, is not C2 'R n x [O,T]);
."

but this is not essential for the right hand side of (50) to be well

defined. Thus, by regularization, it follows that (50) also holds

when 1 is Borel bounded and 8 e LU(OT;R).

7.5. Homogenization

Our objective is to derive a homogenization representation of the

conditional distribution p t) (T) as e1 0. We shall begin by

considering the homogenization of (35), which is a relatively

classical problem. Formally, the method is as follows: We consider

an expansion of the form

0' 2 "'-.: ~~(s6) v£(x,t) " Vo(X,t) + £Vl(x, -, t) +, )+ xt '-

"" "Introducing y - x/c and using the expression

3 ' _ 1 3 .?

". (57) xI  x yi
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we obtain

av~ , a,, 02
.. + !.. . + C + 32..Y. a ( )

22 23v: v 0y)(5)" (Y)x ( v2 +3 + 2 (Y) +Xy 3 -.

i 3 2vIax i 2 2..-

+ 2 ai (Y) yi j a -+ ajj(y)xj(£ + V2 vh(y)xB"

2i aava-

qav
2 2v2 2v -0"-""

(?+ gA (y) x (C ) + +  F v h(y)x () xi -A ""

where we have setcho

(60-v 1 x!yt) v1 xit

C a2v av9 v  -a (y) + g(y)x x v h (y)x-

-" .;.:with y "x/ • We choose :2

aFv2 -

S(60) VlI(X,y,t ) -vI(Xt)

"- and "]

0+ ai(Y ) xj + g j(Y)X aY]Y-

:L ,. ~(61)"<'..

'-_ .. + vohi (y)xj 0i  ai (y) yiy - 0 ''""

. To deal with the latter, we introduce m(y) the unique solution of
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-v (62) 3Y aYj (aij(y) r(y)) 0

_ m periodic on Y, a >0, me C2, fym(y)dy 1 (cf. Bensoussan, .

Lions, and Papanicolaou 1978, p. 530). Then the solvability "

-'[ condition (Fredholm Alternative) for (61) is ....

0 a 0ax + + B -+0g0+vh
(63) ix+ oij "

v0 (x,T)- (x), T> t> 0

vhere ve have set

(64) - = f al (y) m(y)dy(64) aij Y j ,.

.", y

*:' and similarly defined gi. and I.

It we, in fact, choose

• (65) vl(xt) 0
"- " , "-w7%

then 'v"'(x,t) is the solution of

2 v
2v2  v

--- +A v = (2a x gijx .-
atii ay 3x iix ay.

(66)
2 - )2 22 +g 2 h x.3.)'

av 22+ +( +a v2 hiji
• ij ax ax 2 ij:: .

- v (x,T) =0 , T > t > 0

135-..

.A . 13 5 .:'

*o* --4 .o--.. -**

.-' . ",.."-".." .4 4-,-'.. "-d. .% **- % ; v .: T ? %. ik i-: -''L-.''';".". 4'.'''v'"%-



To estimate v , we proceed as follows: First, we derive an

explicit formula for v(x,t) which is similar to (38). Consider the

Gaussian process

(67) d& - & dt + ;db C(M -x

9 - wherea - (2a)f . Using this

T.
,- .:(68) Vo(x,t) - E(i (x,t(T)) exp. [ h

I

and we can easily check that

vo(XKt) l IC exp(61x12)

(69)

• IDvo(x,t)l :E. K exp(61x 2).

for some K and anyS > 0. An additional calculation shows that6 f%

22

IacV
i-; -":(70) < .K x ( x •":",

ax ax. -.

These estimates mean that

LZ (70) j -'- K6 exp(6lxi •

From (61)-(63) we can assert that

(1)o is not the average of 0. This is a slight abuse of notation.
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vVo av0
v2 (x,y,t) - Xij(Y) a: ax + n Xj(y)x. "

F. -. (72)
" 4 Voj(Y) Xj si

for some smooth, bounded functionsi i.1 *i, and jon Y. Since theii.'i-
* higher order derivatives of v0 also satisfy the bounds (69) - (71), we

p can deduce from (66) and (72) that

. (73) -v _ c V (x.T) -o

where

I(xt) < K6 exp(6lx12)

" - Again considering (37), we can write

C- cE- 1 T.(7)T(~) c fC(xc(s),s) (exp[ /p h ( x -$dr])ds} j

t t £

And, by using arguments similar to those which led to the first

estimate in (36), we obtain

(76) Iv (x,t)1  eK6 exp(61x 2)"

where S> 0 can be chosen arbitrarily small. Combining this estimate

with the expression (72) for v2, we have proved the following:

Proposition 2. Under the assumption (1) we have the estimate

£ 2(7) IvC(x, t)  V 0o(, t) I K 6  exp(6jx 2 I
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where 0 can be chosen arbitrarily small.

By adapting this procedure we can provide a similar analysis of

the homogenization properties of the conditional distribution (27) in

the nonlinear filtering problem. This is the main result of this "

section.

First, consider the "limiting filtering problem" defined as

follows: Let

dx - g xdt + adw

(78) dz hxdt + dv

x(O) =, z(O) =0, 0 < t T

and let

.3 (79) p (T) (,P) - E[*(x(T))V0 (T)j ZI

where

(80) jO(t) exp I fthx d0 l hxl 2ds " .

- in which z is a standard Wiener process. ((78) follows from a

4 Girsanov transformation as used in (24)). In fact, we have the

well-known formula

,,~~ ~ --1:/-:

(81) pO(T)(0) - exp(-P(T)) •f (y)exp-(y-x(T))TP-(T)(y-x(T))] dy

R (2r) n 2(det P(T))

in which
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(82) PMti ft 1EX1 2s f t 'x
0 0

and x(t) is the state of the Kalman filter

dx - gx dt -+ Ph (dz -hx dt)

X(0) X0
(83) + -~,T

P(0) P0

As in Proposition 1, ye can show that

0E~p (T)(ij)p(T)1 ~ 0)]

(84)
-f v (X,0)r, (x) dx.

* -Using this, we can state the following:

S Theorem. 'Under the assumptions (9) and (33) we have

* .(85) p (T)(p(T)*
C -

weakly in L2 C Q,z TP) for every bounded, uniformly continuous .

Proof. First note that we can assume, without loss of generality,

that ip is smooth and bounded. Indeed, let ,p L 2( 20ZTrp), then

* using (28)
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W*77- 7 7... ...... .....

IE[pE(T)(*)CT! - IE O(xC(T))iJC (T)&TI

T I~I. T'
:::. (86) IILIT T)...,

L L "

Since i is uniformly continuous and bounded, it can be approximated in

the sup norm by a sequence of smooth, bounded functions. This and the

uniform estimate (86) means that it suffices to estabish (85) fr -

smooth 1p 's.

Note also that the estimate (86) proves that pc(T)(i) is bounded

2 T
in L2 (S ,P). Therefore, it is sufficient to prove that

~(87) E~pE(T)(*)p(T)j ...- E~pO0(T)) p (T)].-':
C 0

for any 8 , since the corresponding set of p(T)'s is dense in

L2( ,ZTP), as we have already noted.

But from formulas (50) and (84), the assertion (87) is equivalent

to

f :"(,O -n '-*d v '(x 0) it (x)'d

" Since this is immediate from Proposition 2, the Theorem is proved.

"* Remark. The Theorem implies the convergence of the conditional

.'" probability itself in a very weak sense. Indeed we have for any

T

. EC (T) (*)& T E!(xe (T)) it (T) T =Ep

* <.. %>-
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where 0(T)(p) - -)
p°(T) (1)

0
denotes the limit conditional probability, and E refers to the

probability on Q for which z satisfies (78). Therefore, we can assert /

I- that
0 0

E (T) (0)i T  E 0r (T) (4) T VV 'V T

It would be nice to prove stronger convergence results, but it must be

kept in mind that the processes (1) themselves converge just in law

and not in a stronger sense (cf. Bensoussan, Lions, and Papanicolaou

1978, p. 405).

II;
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8. Open Problems and Further Work

The two main issues which we plan to develop in subsequent phases

of this research program are the integration of the modeling and

control methodologies along the lines initiated in sections 5, 6 and

7, and the development of numerical software to facilitate the

application of the integrated methodology to complex structures. The

specific issues which we intend to address in Phase II of this

research program are:*

1. Homogenization and asymptotic analysis of control (including state

estimation) for large lattice type structures.

r
*2. Wiener-Hopf - spectral factorization methods for the control of

complex space systems with hybrid (lumped and distributed)

structure.

* -3.Development of stabilizing control strategies for nonlinear

distributed models, including nonlinear beam and plate models.

*4. Synthesis of a design methodology for hybrid nonlinear structures,

* * including the nonlinear differential geometric methods which have

been used for finite dimensional control problems and the (linear)

methods which we have developed for the treatment of distributed

* * linear models.
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. -1. Asymptotic Analysis and Homogenization of Control Problems

for Lattice Type Structures.

In Phase I of this program the use of homogenization in

connection with control system designs was demonstrated in the

analysis of two abstract control and filtering problems. This

analysis established the mathematical feasibility of the technique.

Previously, homogenization had been used only for model reduction, and

it had not been applied in a control theoretic setting. Since the

basic optimization techniques, like the Bellman equation, are

inherently nonlinear, it was not clear how the methodology could be

used. The feasibility of the homogenization methodology has now been

demonstrated in the context of abstract control problems.

We have also demonstrated use of the methodology in the

construction of simplified models for certain kinds dynamical

phenomena propagating on lattice structures. We have treated heat,-

conduction type problems, by exploiting the connection between such

problems and an associated probabilistic structure, and simple one

dimensional lattice structures using purely analytical (PDE) methods

for model simplification. The asymptotic analysis method involves a

study of the convergence of the resolvents of certain operators using

the theory of "correctors" introduced for this class of problems by

Bensoussan, Lions, and Papanicolaou (1978). The method handles the

transition from the "discrete" operators characterizing lattice type

structures to the PDE operators characterizing the continuum

L approximations of the structures. It also produces the natural

continuum model in the course of the asymptotic analysis; that is, it
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is not necessary to postulate the model a priori. For example,

homogenization of the one dimensional lattice structure in section 5

produced the Timoshenko beam model rather than the Euler beam model

which one might have expected from the symmetry of the orginal

formulation.

*In the second phase of this program we shall develop the

methodology to treat the combined problem of modeling and control of

lattice type structures; that is, we shall develop the homogenization

-optimization methodology described in section 6 to treat realistic

models of the dynamical control of large lattice and plate structures.

2. Wiener-Hopf - spectral factorization methods for the control

*of complex space systems with hybrid (lumped and distributed)

* structure.

Thus far we have applied our control theory qnly to purely

distributed models of a very simple character. While it is clear that

the methods can be used for the design and analyis of control systems-

for structures with both distributed and lumped components, it would

be useful to treat a problem including both kinds of elements with an

overall linear model. The NASA challenge problem is of this type and

*we shall consider it, adapting our frequency domain methods as

required to carry out the design. Since this problem is being

considered by several researchers using a variety of methods,

comparison of results and capabilities will be possible. While there

are no conceptual problems in this extension of our methods, we do

~' L expect to encounter challenging numerical problems.

144

F F



t- 7.

3. Development of stabilizing control strategies for nonlinear

distributed models, including nonlinear beam and plate models.

Many of the applications of large space structures require

, ?. maneuvers which cannot be faithfully described by linear models. For

example, large attitude excursions of telescope and antenna structures

require equations for the evolution of the Euler angles through the

course of the maneuver. We plan to extend our methods to treat

certain aspects of this class of problems. It will be necessary to

use differential geometric methods to describe the global dynamics of

" the system undergoing large angle maneuvers. Recent work by Baillieul

(1983), El Baraka and Krishnaprasad (1964), among others has led to a

theory for the attitude dynamics for articulated structures. Elements

of this theory in combination with the methods for the control of

distributed systems which have been used in Phase I of this project

should be a useful starting point for the development of a

comprehensive theory for large scale motions of complex, distributed

structures.

Specific issues to be addressed include the use of stabilization

" techniques for semilinear distributed systems. These are systems in

which the controls enter the dynamics by multipling the state. Common

examples include the dynamics of a beam in which the applied load can

".. be manipulated. When the load is used as a feedback control, the

*; system is nonlinear, and the theory of nonlinear semigroups is the

% .~ most convenient setting for the analysis. In a series of papers Ball

and Slemrod have derived conditions for the stabilization of such

*' systems. In particular, they show that stabilization of the Euler

145.'.
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beam by semilinear feedback is a delicate problem, and that the most

natural conditions tend to lead to a weak form of stability.

In the second phase of this program we plan to combine this

theory with the corresponding theory for the stabilization of finite

dimensionil nonlinear systems undergoing large attitude motions.

4. Synthesis of the Nonlinear and Distributed Design Methods

Resolution of the problems in 1.-3., will lead to a design __

" procedure for (a class of) control systems for large space structures.

Work will be necessary to unify the various methods into a software

f system for computer-aided-design. We shall use software systems for

. symbolic manipulation (either MACSYMA or SMP) to implement the complex

analysis involved in the initial reduction of the modeling and control

problem (for example, by carrying out an asymptotic analysis in the

context of the control system design). This will permit us to base

"- the selection of numerical routines for the implementation of the

* models and control laws on simplified structural models. This will in

"" turn reduce the number and diversity of costly computer runs which

must be made with conventional design tools.

4.-
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APPEZVDIX A

Experimontal Results For The Eulcr Dcam

-S The plots appear in groups. A first page of each group contains parameters

of the run. For example the first group is preceeded by a page with the

following parameters. CONTROL: .2,.5.,.8. The number designate locations

of point actuators. Similar remarks apply for the OBSERV, where this

OBSERY designates the points on the beam whose displacement is penalized in

the cost criterion. FREQUENCY RANGE is the range of frequency over which

we evaluate the transfer function matrix, the spectral factors, and the

. resolvent. RELATIVE WEIGHT OF X VS U is the weight of the norm of

-. observation vector, assuming the weight of the control vector to be one.

The name of the file is a working variable. WHAT MODE: here we list all

" - the spacial modes that are used to displace the beam (one at a time), and

the next line provides the amplitude of this disturbance. FEEDBACK GAIN:

is -1 for the optimal gain and it is 0 for the open loop. The meaning of

. . the plot titles is as follows: "Beam at x, yth mode," means that the beam

"" is initially displaced by the y-th spacial mode, and the deflection of the

- - beam is observed as a function of time at point x. On the control plot we

- . indicate the position of the point control and the time evolution of the

control at that point.
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